Toán 6 Bài tập cuối chương 7 - Chân trời sáng tạo Giải Toán lớp 6 trang 67, 68 - Tập 2

Giải Toán 6 Bài tập cuối chương 7 sách Chân trời sáng tạo, giúp các em học sinh lớp 6 nắm được phương pháp, cách giải toàn bộ bài tập trang 67, 68 SGK Toán 6 Tập 2 Chân trời sáng tạo.

Qua đó, giúp các em giải toàn bộ các bài tập của phần ôn tập Chương 7: Hình học trực quan - Tính đối xứng của hình phẳng trong thế giới tự nhiên Toán 6 tập 2 để chuẩn bị tốt bài trước khi tới lớp. Đồng thời, cũng giúp thầy cô tham khảo soạn giáo án cho học sinh của mình. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Download.vn:

Giải Toán 6 Bài tập cuối chương 7 Chân trời sáng tạo

Giải Toán 6 Chân trời sáng tạo trang 68 tập 2

Bài 1

Các đường nét đứt ở mỗi hình bên dưới có phải là trục đối xứng không?

Bài 1

Gợi ý đáp án:

Đường nét đứt ở hình a và d là trục đối xứng. Hai đường ở hình b và c còn lại không phải là trục đối xứng của hình.

Bài 2

Em hãy vẽ các hình sau vào vở rồi tô màu các ô vuông để mỗi hình thu được nhận đường nét đứt là trục đối xứng.

Bài 2

Gợi ý đáp án:

Các em tô màu vào các ô được đánh dấu:

Bài 2

Bài 3

Hình nào sau đây có tâm đối xứng? Hình nào vừa có tâm đối xứng vừa có trục đối xứng?

Bài 3

Gợi ý đáp án:

Hình b có trục đối xứng. Hình a vừa có tâm đối xứng, vừa có trục đối xứng.

Bài 3

Bài 4

Hình nào sau đây có trục đối xứng?

Đối xứng

Gợi ý đáp án:

Đối xứng

Nhận xét: Hình a) có trục đối xứng (như hình vẽ)

Hình b) không có trục đối xứng.

Hình c) có trục đối xứng (như hình vẽ)

Hình d) có trục đối xứng (như hình vẽ)

Vậy hình a), hình c) và hình d) có trục đối xứng.

Bài 5

Hai bạn Na và Toàn đứng đối diện nhau trên nền đất, ở giữa họ có một dãy các số và dấu cộng như hình dưới đây. Do vị trí khác nhau nên hai bạn thấy hai dãy phép tính khác nhau.

Bài 5

Hãy tìm cách điền hai chữ số vào hai ô trống để kết quả tính của hai bạn Na và Toàn bằng nhau.

Em nhận xét gì về hình ảnh mà hai bạn quan sát được.

Gợi ý đáp án:

Ở vị trí của mỗi bạn sẽ nhìn thấy các phép tính khác nhau.

- Ở vị trí của Toàn nhìn thấy phép tính:

89 + 16 + 69 + 6… + …8 + 11.

= 6… + …8 + 89 + 16 + 69 + 11 (Tính chất giao hoán)

= (6… + …8) + (89 + 16 + 69 + 11) (Tính chất kết hợp)

= 6… + …8 + 185.

- Ở vị trí của Na nhìn thấy phép tính:

11 + 8… + …9 + 69 + 91 + 68

= 8… + …9 + 11 + 69 + 91 + 68 (Tính chất giao hoán)

= (8… + …9) + (11 + 69 + 91 + 68) (Tính chất kết hợp)

= 8… + …9 + 239.

Để kết quả tính của hai bạn Na và Toàn bằng nhau thì:

6… + …8 + 185 = 8… + …9 + 239

6… + …8 − 8… - …9 = 54

Gọi các ô trống thứ nhất, thứ hai, thứ ba và thứ tư lần lượt là a, b, c, d.

Như trên hình, ta thấy khi quay ngược số a sẽ được số d và quay ngược số b ra số c.

Ta có biểu thức sau:

\overline {6a}  + \overline {b8}  - \overline {8c}  - \overline {d9}  = 54

60 + a + 10b + 8 − (80 + c) − (10d + 9) = 54

60 + a + 10b + 8 − 80 − c − 10d − 9 = 54

a + 10b − c − 10d − 21 = 54

(a + 10b) − (c + 10d) = 75

\overline {ba}  - \overline {dc}  = 75

Trong hình vẽ trên, khi quay về phía mỗi bạn thì đều nhận được một phép tính có nghĩa.

Do đó, các chữ số a, b, c, d khi quay ngược lại vẫn tạo ra một số có nghĩa nên a, b, c, d và số 0 không được đứng đầu.

Do đó a, b, c, d

Trường hợp 1: a > c

Khi đó, a − c = 5 và b − d = 7.

- Số a, c thỏa mãn a − c = 5 và a, c nên a = 6; c = 1.

- Số b, d thỏa mãn b − d = 7 và a, c nên b = 8; d = 1.

Nhận thấy: quay ngược số a không ra được số d và quay ngược số b không ra được số c.

Do đó trường hợp này vô lý.

Trường hợp 1: a < c

Khi đó, 10 + a − c = 5 và b − d = 8 hay c − a = 5 và b − d = 8.

(a không trừ được cho c, mượn 10 đơn vị (hay 1 chục) ta có: 10 + a − c = 5, trả 1 vào hàng chục ta có: c − a = 5).

- Số a, c thỏa mãn c − a = 5 và a, c nên c = 6; a = 1.

- Số b, d thỏa mãn b − d = 8 và b, d nên b = 9; d = 1.

Nhận thấy: quay ngược số a ra được số d và quay ngược số b ra được số c.

Do đó trường hợp này thỏa mãn.

Từ đó suy ra, a = 1; b = 9; c = 6; d = 9.

Vậy phép tính cần điền là:

89 + 16 + 69 + 61 + 98 + 11 = 11 + 86 + 19 + 69 + 91 + 68

Hình ảnh mà hai bạn quan sát được là với mỗi số hạng, Na nhìn thấy chữ số ở hàng đơn vị thì Toàn nhìn thấy chữ số quay ngược lại ở hàng chục và ngược lại.

Bài 6

Hãy tìm dụng cụ học tập có tính đối xứng.

Gợi ý đáp án:

- Thước kẻ có trục đối xứng (không tính những khoảng cách ghi trên thân thước).

Thước kẻ

- Quyển sách có trục đối xứng.

Quyển sách

- Bút kéo thủ công có trục đối xứng

Bút kéo thủ công

- Bút chì có trục đối xứng (không tính các chữ ghi trên thân bút).

Bút chì

Chia sẻ bởi: 👨 Hàn Vũ
Mời bạn đánh giá!
  • Lượt tải: 37
  • Lượt xem: 2.472
  • Dung lượng: 203,7 KB
Sắp xếp theo