Toán 8 Bài 16: Đường trung bình của tam giác Giải Toán 8 Kết nối tri thức trang 81, 82, 83

Toán 8 Bài 16: Đường trung bình của tam giác là tài liệu vô cùng hữu ích giúp các em học sinh lớp 8 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 8 Kết nối tri thức với cuộc sống tập 1 trang 81, 82, 83.

Giải Toán 8 Kết nối tri thức tập 1 trang 81 → 83 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh ôn tập Bài 16 Chương IV: Định lí Thalès. Vậy mời thầy cô và các em theo dõi bài viết dưới đây của Download.vn:

Toán 8 Bài 16: Đường trung bình của tam giác Kết nối tri thức

Giải Toán 8 Kết nối tri thức Tập 1 trang 83

Bài 4.6

Tính các độ dài x, y trong Hình 4.18.

Bài 4.6

Bài giải:

a) HK là đường trung bình suy ra HK=\frac{1}{2}DE=\frac{1}{2}x\Rightarrow x=6\(HK=\frac{1}{2}DE=\frac{1}{2}x\Rightarrow x=6\)

b) Ta có: NM\perp AB,AC\perp AB\Rightarrow  MN//A\(NM\perp AB,AC\perp AB\Rightarrow  MN//A\)

Mặt khác M là trung điểm AB nên MN là đường trung bình của tam giác ABC

Suy ra N là trung điểm BC ⇒ y = BN = 5

Bài 4.7

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC.

a) Chứng minh tứ giác BMNC là hình thang

b) Tứ giác MNPB là hình gì? Tại sao?

Bài giải:

Bài 4.7

a) Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

suy ra MN // BC

Do đó tứ giác BMNC là hình thang

b) Ta có: MN là đường trung bình của ΔBAC

Suy ra: MN//BC và MN=\frac{BC}{2}\(MN=\frac{BC}{2}\)

BP=\frac{BC}{2}\(BP=\frac{BC}{2}\)

nên MN//BP và MN=BP

Xét tứ giác BMNP có

MN//BP

MN=BP

Do đó: BMNP là hình bình hành

Bài 4.8

Cho tam giác ABC có trung tuyến AM. Lấy hai điểm D và E trên cạnh AB sao cho AD = DE = EB và D nằm giữa hai điểm A, E

a) Chứng minh DC // EM

b) DC cắt AM tại I. Chứng minh I là trung điểm của AM

Bài giải:

Bài 4.8

a) Xét ΔBDC có

E là trung điểm của BD(BE=ED; B,E,D thẳng hàng)

M là trung điểm của BC(gt)

Do đó: EM là đường trung bình của ΔBDC (Định nghĩa đường trung bình của tam giác)

⇒ ME//CD (Định lí 2 về đường trung bình của tam giác)

b) Xét ΔAEM có

D là trung điểm của AE(AD=DE; A,D,E thẳng hàng)

DI//EM (cmt)

Do đó: I là trung điểm của AM (Định lí 1 về đường trung bình của tam giác)

nên AI=IM (đpcm)

Bài 4.9

Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh rằng tứ giác AHOK là hình chữ nhật

Bài giải:

Bài 4.9

Ta có: OA = OB suy ra tam giác OAB cân tại B, OH là đường trung tuyến nên OH cũng là đường cao, do đó \widehat{OHA}=90^{\circ}\(\widehat{OHA}=90^{\circ}\)

Tương tự, \widehat{OKA}=90^{\circ}\(\widehat{OKA}=90^{\circ}\)

Xét tứ giác AHOK có: \widehat{A}=\widehat{OKA}=\widehat{OHA}=90^{\circ}\(\widehat{A}=\widehat{OKA}=\widehat{OHA}=90^{\circ}\) suy ra AHOK là hình chữ nhật

Chia sẻ bởi: 👨 Lê Thị tuyết Mai
Liên kết tải về

Link Download chính thức:

Sắp xếp theo
👨
    Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm