Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ Giải SGK Toán 10 trang 57 - Tập 2 sách Chân trời sáng tạo
Giải Toán lớp 10 trang 57, 58 tập 2 Chân trời sáng tạo giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi bài tập trong SGK bài 2 Đường thẳng trong mặt phẳng tọa độ thuộc chương 9 Phương pháp toạ độ trong mặt phẳng.
Toán 10 Chân trời sáng tạo trang 57, 58 tập 2 được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa môn Toán lớp 10. Giải Toán lớp 10 trang 57 sẽ là tài liệu cực kì hữu ích hỗ trợ các em học sinh trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn. Vậy sau đây là trọn bộ bài giải Toán 10 Bài 2: Tọa độ của vectơ mời các bạn cùng theo dõi.
Toán 10 Chân trời sáng tạo tập 2 trang 57 giúp các em học sinh có thêm nhiều gợi ý tham khảo để giải các câu hỏi phần khởi động và 10 bài tập trong SGK nhanh chóng và dễ dàng hơn.
Giải Toán 10 Chân trời sáng tạo tập 2 trang 57 hướng dẫn giải bài tập đường thẳng trong mặt phẳng tọa độ rất chi tiết. Hy vọng rằng tài liệu sẽ giúp các em học sinh học tốt môn Toán 10 tập 2 trang 57. Đồng thời các thầy cô giáo, bậc phụ huynh có thể sử dụng tài liệu để hướng dẫn các em khi tự học ở nhà được thuận tiện hơn. Vậy sau đây là trọn bộ tài liệu giải Toán 10 tập 2 trang 57 Chân trời sáng tạo mời các bạn cùng theo dõi.
Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ
Phần Khởi động
Tìm các giá trị của tham số a, b, c để phương trình ax + by + c = 0 có thể biểu diễn được các đường thẳng trong hình dưới đây.
Lời giải:
+) Xét hình vẽ:
Ta có phương trình đường thẳng trong hình trên là y = 2x + 3
⇔ 2x – y + 3 = 0
Để phương trình ax + by + c = 0 có thể biểu diễn được đường thẳng y = 2x + 3 thì:
a = 2, b = -1, c = 3.
Vậy a = 2, b = -1, c = 3 thì phương trình ax + by + c = 0 có thể biểu diễn được đường thẳng y = 2x + 3.
+) Xét hình vẽ:
Ta có phương trình đường thẳng trong hình trên là y = -x + 1
⇔ x + y – 1 = 0
Để phương trình ax + by + c = 0 có thể biểu diễn được đường thẳng y = -x + 1 thì:
a = 1, b = 1, c = -1.
Vậy a = 1, b = 1, c = -1 thì phương trình ax + by + c = 0 có thể biểu diễn được đường thẳng y = -x + 1.
+) Xét hình vẽ:
Ta có phương trình đường thẳng trong hình trên là y = 3
⇔ y – 3 = 0
⇔ 0x + y – 3 = 0
Để phương trình ax + by + c = 0 có thể biểu diễn được đường thẳng y = 3 thì:
a = 0, b = 1, c = -3.
Vậy a = 0, b = 1, c = -3 thì phương trình ax + by + c = 0 có thể biểu diễn được đường thẳng y = 3.
+) Xét hình vẽ:
Ta có phương trình đường thẳng trong hình trên là x = -2
⇔ x + 2 = 0
⇔ x + 0y + 2 = 0
Để phương trình ax + by + c = 0 có thể biểu diễn được đường thẳng x = -2 thì:
a = 1, b = 0, c = 2 .
Vậy a = 1, b = 0, c = 2 thì phương trình ax + by + c = 0 có thể biểu diễn được đường thẳng x = -2.
Phần Bài tập
Bài 1 trang 57
Lập phương trình tham số và phương trình tổng quát của đường thẳng d trong mỗi trường hợp sau:
a. d đi qua điểm A(-1; 5) và có vectơ chỉ phương
b. d đi qua điểm B(4; -2) và có vectơ pháp tuyến là
c. d đi qua P(1; 1) và có hệ số góc k = -2
d. d đi qua hai điểm Q(3; 0) và R(0; 2)
Gợi ý đáp án
a. Ta có
Phương trình tham số của đường thẳng d đi qua A(-1; 5) và nhận
Phương trình tổng quát của đường thẳng d đi qua A(-1; 5) và nhận
b. Phương trình tổng quát của d đi qua B(4; -2) và nhận
Ta có
Phương trình tham số của d đi qua B(4; -2) và nhận
c. Ta có: d là đồ thị của hàm số bậc nhất
Vì hệ số góc k = -2 nên ta có:
Lại có d đi qua P(1; 1) nên thay tọa độ P vào hàm số bậc nhất ta được:
Ta có: d nhận
d. Ta có:
Phương trình tham số của d đi qua Q(3; 0) và nhận
Phương trình tổng quát của d đi qua Q(3; 0) và nhận
Bài 2 trang 57
Cho tam giác ABC, biết A(2; 5), B(1; 2) và C(5; 4).
a. Lập phương trình tổng quát của đường thẳng BC.
b. Lập phương trình tham số của trung tuyến AM
c. Lập phương trình của đường cao AH.
Gợi ý đáp án
Vẽ hình
a. Ta có
Phương trình tổng quát của đường thẳng BC đi qua B(1; 2) và nhận
b. Ta có M là trung điểm của
Phương trình tham số của trung tuyến AM đi qua A(2; 5) và nhận
c. Phương trình đường cao AH đi qua A(2; 5) và nhận
Bài 3 trang 57
Lập phương trình tham số và phương trình tổng quát của đường thẳng
a.
b.
Gợi ý đáp án
a. Vì
Phương trình tham số của
b. Vì
Phương trình tham số của
Bài 4 trang 57
Xét vị trí tương đối của các cặp dường thẳng
Gợi ý đáp án
a. Ta có
Ta có:
Tọa độ M là giao điểm của
Vậy
b. Ta có
Ta có:
Lấy điểm
Vậy
c.
Ta có:
Ta có:
Lấy điểm
Vậy
Bài 5 trang 58
Cho đường thẳng d có phương trình tham số
Tìm giao điểm của d với hai trục tọa độ
Gợi ý đáp án
Giao điểm A của d và trục Ox là nghiệm của hệ phương trình:
Giao điểm B của d và trục Oy là nghiệm của hệ phương trình:
Vậy d cắt hai trục tọa độ tại các điểm
Bài 6 trang 58
Tìm số đo góc xen giữa hai đường thẳng
c.
Gợi ý đáp án
a. Ta có:
b. Ta có
Ta có:
c. Hai đường thẳng
Ta có:
Bài 7 trang 58
Tính khoảng cách từ điểm M đến đường thẳng
a. M(1; 2) và
b. M(4; 4) và
c. M(0; 5) và
d. M(0; 0) và
Gợi ý đáp án
b. Phương trình tổng quát của \Delta đi qua điểm O(0; 0) và nhận
x + y = 0
c. Phương trình tổng quát của
Bài 8 trang 58
Tính khoảng cách giữa hai đường thẳng:
Gợi ý đáp án
Ta có:
Lấy điểm
Bài 9 trang 58
Trong mặt phẳng Oxy, cho điểm S(x; y) di động trên đường thẳng d:
12x - 5y + 16 = 0
Tính khoảng cách ngắn nhất từ điểm M(5; 10) đến điểm S.
Gợi ý đáp án
Khoảng cách ngắn nhất từ điểm M đến điểm S chính là khoảng cách từ điểm M đến đường thẳng d.
Ta có:
Vậy khoảng cách ngắn nhất từ M đến S là 2.
Bài 10 trang 58
Một người đang viết chương trình cho trò chơi bóng đá rô bốt. Gọi A(-1; 1), B(9; 6), C(5; -3) là ba vị trí trên màn hình.
a. Viết phương trình các đường thẳng AB, AC, BC.
b. Tính góc hợp bởi hai đường thẳng AB và AC.
c. Tính khoảng cách từ điểm A đến đường thẳng BC.
Gợi ý đáp án
a. Ta có:
Phương trình đường thẳng AB đi qua điểm A(-1; 1) và nhận
Phương trình đường thẳng AC đi qua điểm A(-1; 1) và nhận
Phương trình đường thẳng BC đi qua điểm B(9; 6) và nhận
Lý thuyết Đường thẳng trong mặt phẳng tọa độ
*Phương trình tham số của đường thẳng
Cho đường thẳng
Hệ (2) được gọi là phương trình tham số của đường thẳng
Ví dụ: Lập phương trình tham số của đường thẳng
Giải
Phương trinh tham số của đường thẳng
*Phương trình tổng quát của đường thẳng
Trong mặt phẳng toạ độ, mọi đường thẳng đều có phương trình tổng quát dạng ax + by + c =0, với a và b không đồng thời bằng 0. Ngược lại, mỗi phương trình dạng ax + by + c =0, với a và b không đồng thời bằng 0, đều là phương trình của một đường thẳng, nhận
* Liên hệ giữa đồ thị hàm số bậc nhất và đường thẳng
+ Nếu a=0 và
Khi đó d là đường thẳng vuông góc với Oy tại điểm
+ Nếu b =0 và
Khí đó d là đường thẳng vuông góc với Ox tại điểm
Trong cả hai trường hợp này, đường thẳng d không phải là đồ thị của hàm số bậc nhất.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:
