Toán 7 Bài 3: Tam giác cân Giải Toán lớp 7 trang 59 sách Chân trời sáng tạo - Tập 2
Giải bài tập Toán lớp 7 Bài 3: Tam giác cân với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán 7 Tập 2 Chân trời sáng tạo trang 59, 60, 61, 62, 63. Qua đó, giúp các em ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán.
Giải Toán 7 Bài 3 chi tiết phần câu hỏi, luyện tập, bài tập, đồng thời còn giúp các em hệ thống lại toàn bộ kiến thức trọng tâm của Bài 3 Chương8: Tam giác. Bên cạnh đó, cũng giúp thầy cô soạn giáo án cho học sinh của mình. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Download.vn:
Giải Toán 7 bài 3: Tam giác cân Chân trời sáng tạo
Giải Toán 7 Chân trời sáng tạo tập 2 Bài 3 - Vận dụng
Vận dụng 1
Trong hình mái nhà ở Hình 8, tính góc B và góc C, biết
Lời giải:
Tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Do đó
Trong tam giác ABC:
Suy ra
Do đó
Vận dụng 2
Cho tam giác ABC cân tại A có góc B bằng
Chứng minh rằng tam giác ABC đều.
Lời giải:
Tam giác ABC cân tại A nên AB = AC và
Tam giác ABC có:
Tam giác ABC có nên tam giác ABC cân tại C.
Do đó CA = CB.
Mà AB = AC nên AB = AC = BC.
Vậy tam giác ABC là tam giác đều.
Giải Toán 7 Chân trời sáng tạo tập 2 Bài 3 - Thực hành
Thực hành 1
Tìm các tam giác cân trong Hình 4. Kể tên các cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của mỗi tam giác cân đó.
Lời giải:
Ta có MN = ME + EN = 1 + 1 = 2 cm; MP = MF + FP = 1 + 1 = 2 cm.
Tam giác MEF có ME = MF = 1 cm nên tam giác MEF cân tại M.
Tam giác MEF cân tại M nên ME và MF là cạnh bên, EF là cạnh đáy,
Tam giác MNP có MN = MP = 2 cm nên tam giác MNP cân tại M.
Tam giác MNP cân tại M nên MN và MP là cạnh bên, NP là cạnh đáy,
Tam giác MPH có MP = MH = 2 cm nên tam giác MPH cân tại M.
Tam giác MPH cân tại M nên MP và MH là cạnh bên, PH là cạnh đáy,
Thực hành 2
Tìm số đo các góc chưa biết của mỗi tam giác trong Hình 7.
Lời giải:
Tam giác MNP có MN = MP nên tam giác MNP cân tại M.
Do đó
Trong tam giác MNP:
Tam giác EFH có EF = EH nên tam giác EFH cân tại E.
Do đó
Trong tam giác EFH:
Suy ra
Do đó
Vậy
Thực hành 3
Tìm các tam giác cân trong Hình 11 và đánh dấu các cạnh bằng nhau.
Lời giải:
Tam giác ABC có
Do đó AB = AC.
Tam giác MNP vuông tại N nên
Tam giác MNP có
Do đó NM = NP.
Tam giác EFG có
Do đó tam giác EFG không phải tam giác cân.
Ta có hình vẽ sau:
Giải Toán 7 Chân trời sáng tạo trang 62, 63 tập 2
Bài 1
Tìm các tam giác cân và tam giác đều trong mỗi hình sau (Hình 13). Giải thích.
Gợi ý đáp án:
a.
b.
c.
d.
Bài 2
Cho hình 14, biết ED = EF và EI là tia phân giác của
Chứng minh rằng:
a.
b. Tam giác DIF cân.
Gợi ý đáp án:
a. Xét
EI chung
DE = EF.
b. Vì
Bài 3
Cho tam giác ABC cân tại A có
a. Tính
b. Gọi M, N lần lượt là trung điểm của AB, AC. Chứng minh tam giác AMN cân.
c. Chứng minh rằng MN // BC.
Gợi ý đáp án:
a. Vì tam giác ABC cân tại A
b. Vì M, N lần lượt là trung điểm của AB, AC nên
mà AB = AC ( vì
c. Xét
Xét
Mà 2 góc này ở vị trí đồng vị
Bài 4
Cho tam giác ABC cân tại A (hình 16). Tia phân giác của góc B cắt AC tại F, tia phân giác của góc C cắt AB tại E.
a) Chứng minh rằng
b) Chứng minh rằng tam giác AEF cân.
c) Gọi I là giao điểm của BF và CE. Chứng minh rằng tam giác IBC và tam giác IEF là những tam giác cân.
Gợi ý đáp án:
a) Vì tam giác ABC cân tại A
Mà
b) Xét tam giác
AB = AC
c) +) Chứng minh tương tự câu a ta có:
Xét tam giác IBC có:
+)
Ta có: IE = CE - IC; IF = BF - BI
Bài 5
Phần thân của một móc treo quần áo có dạng hình tam giác cân (Hình 17a) được vẽ lại như Hình 17b. Cho biết AB = 20cm; BC = 28cm và
Gợi ý đáp án:
Vì tam giác ABC cân tại A
Chu vi tam giác ABC = AB + AC + BC = 20 + 20 + 28 = 68 (cm).
Bài 6
Một khung cửa sổ hình tam giác có thiết kế như Hình 18a được vẽ lại như Hình 18b
a. Cho biết
b. Chứng minh MN // BC, MP // AC.
c. Chứng minh bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.
Gợi ý đáp án:
a. Vì AM = AN => Tam giác AMN cân tại A
+ Trong tam giác ABC có AB = BC (vì AM = AN = BM = CN; AB = AM + MB; AC = AN + NC)
=> Tam giác ABC cân tại A
+ Trong tam giác MBP có MB = MP
=> Tam giác MBP cân tại M
b. + Vì
Mà 2 góc này ở vị trí đồng vị
=> MN // BC
+ Ta có:
mà hai góc ở vị trí đồng vị
=> MP // AC.
c. + Xét
AM = MB
AN = MP
+ Xét
PM = NP
PN = NC
+ Xét
MN chung
PM = AM
PN = AN
Vậy bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:
