Toán 7 Bài tập cuối chương 1 - Chân trời sáng tạo Giải Toán lớp 7 trang 27, 28 - Tập 1

Giải bài tập SGK Toán 7 Tập 1 trang 27, 28 sách Chân trời sáng tạo giúp các em học sinh lớp 7 xem gợi ý giải các bài tập ôn tập chương 1: Số hữu tỉ.

Thông qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài ôn tập chương 1 - Số hữu tỉ trong sách giáo khoa Toán 7 Tập 1 Chân trời sáng tạo. Đồng thời, cũng giúp thầy cô tham khảo để soạn giáo án cho học sinh của mình theo chương trình mới. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Download.vn nhé:

Giải Toán 7 Chân trời sáng tạo trang 27, 28 tập 1

Bài 1

Thực hiện phép tính.

a) \frac{2}{5} + \frac{3}{5}:\left( { - \frac{3}{2}} \right) + \frac{1}{2};

b)2\frac{1}{3} + {\left( { - \frac{1}{3}} \right)^2} - \frac{3}{2};

c)\left( {\frac{7}{8} - 0,25} \right):{\left( {\frac{5}{6} - 0,75} \right)^2};

d)\left( { - 0,75} \right) - \left[ {\left( { - 2} \right) + \frac{3}{2}} \right]:1,5 + \left( {\frac{{ - 5}}{4}} \right)

Gợi ý đáp án:

a)

\begin{array}{l}\frac{2}{5} + \frac{3}{5}:\left( { - \frac{3}{2}} \right) + \frac{1}{2}\\ = \frac{2}{5} + \frac{3}{5}.\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}\\ = \frac{2}{5} + \frac{{ - 2}}{5} + \frac{1}{2}\\ = \frac{1}{2}\end{array}

b)

\begin{array}{l}2\frac{1}{3} + {\left( { - \frac{1}{3}} \right)^2} - \frac{3}{2}\\ = \frac{7}{3} + \frac{1}{9} - \frac{3}{2}\\ = \frac{{42}}{{18}} + \frac{2}{{18}} - \frac{{27}}{{18}}\\ = \frac{{17}}{{18}}\end{array}

c)

\begin{array}{l}\left( {\frac{7}{8} - 0,25} \right):{\left( {\frac{5}{6} - 0,75} \right)^2}\\ = \left( {\frac{7}{8} - \frac{1}{4}} \right):\left( {\frac{5}{6} - \frac{3}{4}} \right)\\ = \left( {\frac{7}{8} - \frac{2}{8}} \right):\left( {\frac{{10}}{{12}} - \frac{9}{{12}}} \right)\\ = \frac{5}{8}:\frac{1}{{12}}\\ = \frac{5}{8}.12\\ = \frac{{15}}{2}\end{array}

d)

\begin{array}{l}\left( { - 0,75} \right) - \left[ {\left( { - 2} \right) + \frac{3}{2}} \right]:1,5 + \left( {\frac{{ - 5}}{4}} \right)\\ = \left( {\frac{{ - 3}}{4}} \right) - \left[ {\frac{{ - 4}}{2} + \frac{3}{2}} \right]:\frac{3}{2} + \left( {\frac{{ - 5}}{4}} \right)\\ = \left( {\frac{{ - 3}}{4}} \right) - \frac{{ - 1}}{2}.\frac{2}{3} + \left( {\frac{{ - 5}}{4}} \right)\\ = \left( {\frac{{ - 3}}{4}} \right) + \left( {\frac{{ - 5}}{4}} \right) + \frac{1}{3}\\ =  - 2 + \frac{1}{3}\\ = \frac{{ - 6}}{3} + \frac{1}{3}\\ = \frac{{ - 5}}{3}\end{array}

Bài 2

Thực hiện phép tính (bằng cách hợp lí nếu có thể).

a)\frac{5}{{23}} + \frac{7}{{17}} + 0,25 - \frac{5}{{23}} + \frac{{10}}{{17}}

b)\frac{3}{7}.2\frac{2}{3} - \frac{3}{7}.1\frac{1}{2};

c)13\frac{1}{4}:\left( { - \frac{4}{7}} \right) - 17\frac{1}{4}:\left( { - \frac{4}{7}} \right);

d)\frac{{100}}{{123}}:\left( {\frac{3}{4} + \frac{7}{{12}}} \right) + \frac{{23}}{{123}}:\left( {\frac{9}{5} - \frac{7}{{15}}} \right).

Gợi ý đáp án:

a)

\begin{array}{l}\frac{5}{{23}} + \frac{7}{{17}} + 0,25 - \frac{5}{{23}} + \frac{{10}}{{17}}\\ = \left( {\frac{5}{{23}} - \frac{5}{{23}}} \right) + \left( {\frac{7}{{17}} + \frac{{10}}{{17}}} \right) + 0,25\\ = 0 + \frac{{17}}{{17}} + \frac{{25}}{{100}}\\ = 1 + \frac{1}{4}\\ = \frac{5}{4}\end{array}

b)

\begin{array}{l}\frac{3}{7}.2\frac{2}{3} - \frac{3}{7}.1\frac{1}{2}\\ = \frac{3}{7}.\frac{8}{3} - \frac{3}{7}.\frac{3}{2}\\ = \frac{3}{7}.\left( {\frac{8}{3} - \frac{3}{2}} \right)\\ = \frac{3}{7}.\left( {\frac{{16}}{6} - \frac{9}{6}} \right)\\ = \frac{3}{7}.\frac{7}{6}\\ = \frac{1}{2}\end{array}

c)

\begin{array}{l}13\frac{1}{4}:\left( { - \frac{4}{7}} \right) - 17\frac{1}{4}:\left( { - \frac{4}{7}} \right)\\ = 13\frac{1}{4}.\frac{{ - 7}}{4} - 17\frac{1}{4}.\frac{{ - 7}}{4}\\ = \frac{{ - 7}}{4}.\left( {13\frac{1}{4} - 17\frac{1}{4}} \right)\\ = \frac{{ - 7}}{4}.\left( { - 4} \right)\\ = 7\end{array}

d)

\begin{array}{l}\frac{{100}}{{123}}:\left( {\frac{3}{4} + \frac{7}{{12}}} \right) + \frac{{23}}{{123}}:\left( {\frac{9}{5} - \frac{7}{{15}}} \right)\\ = \frac{{100}}{{123}}:\left( {\frac{9}{{12}} + \frac{7}{{12}}} \right) + \frac{{23}}{{123}}:\left( {\frac{{27}}{{15}} - \frac{7}{{15}}} \right)\\ = \frac{{100}}{{123}}:\frac{{16}}{{12}} + \frac{{23}}{{123}}:\frac{{20}}{{15}}\\ = \frac{{100}}{{123}}:\frac{4}{3} + \frac{{23}}{{123}}:\frac{4}{3}\\ = \frac{{100}}{{123}}.\frac{3}{4} + \frac{{23}}{{123}}.\frac{3}{4}\\ = \frac{3}{4}.\left( {\frac{{100}}{{123}} + \frac{{23}}{{123}}} \right)\\ = \frac{3}{4}.\frac{{123}}{{123}}\\ = \frac{3}{4}.1\\ = \frac{3}{4}\end{array}

Bài 3

Thực hiện phép tính.

a) \frac{{{5^{15}}{{.27}^7}}}{{{{125}^5}{{.9}^{11}}}}

b){\left( { - 0,2} \right)^2}.5 - \frac{{{2^3}{{.27}^3}}}{{{4^6}{{.9}^5}}};

c)\frac{{{5^6} + {2^2}{{.25}^3} + {2^2}{{.125}^2}}}{{{{26.5}^6}}}.

Gợi ý đáp án:

a)

\frac{{{5^{15}}{{.27}^7}}}{{{{125}^5}{{.9}^{11}}}} = \frac{{{5^{15}}.{{\left( {{3^3}} \right)}^7}}}{{{{\left( {{5^3}} \right)}^5}.{{\left( {{3^2}} \right)}^{11}}}} = \frac{{{5^{15}}{{.3}^{21}}}}{{{5^{15}}{{.3}^{22}}}} = \frac{1}{3}

b)

{\left( { - 0,2} \right)^2}.5 - \frac{{{2^3}{{.27}^3}}}{{{4^6}{{.9}^5}}} = 0,04.5 - \frac{{{2^3}.{{\left( {{3^3}} \right)}^3}}}{{{{\left( {{2^2}} \right)}^6}.{{\left( {{3^2}} \right)}^5}}}

= 0,2 - \frac{{{2^3}{{.3}^9}}}{{{2^{12}}{{.3}^{10}}}} = \frac{1}{5} - \frac{1}{{{2^9}.3}} = \frac{1}{5} - \frac{1}{{1536}} = \frac{{1531}}{{7680}}

c)

\begin{array}{l}\frac{{{5^6} + {2^2}{{.25}^3} + {2^2}{{.125}^2}}}{{{{26.5}^6}}} = \frac{{{5^6} + {2^2}.{{\left( {{5^2}} \right)}^3} + {2^2}.{{\left( {{5^3}} \right)}^2}}}{{{{2.13.5}^6}}}\\ = \frac{{{5^6} + {{4.5}^6} + {{4.5}^6}}}{{{{2.13.5}^6}}} = \frac{{{5^6}.\left( {1 + 4 + 4} \right)}}{{{{2.13.5}^6}}}\\ = \frac{{{5^6}.13}}{{{{2.13.5}^6}}} = \frac{1}{2}\end{array}

Bài 4

Tính giá trị các biểu thức sau:

a)A = \left[ {\left( { - 0,5} \right) - \frac{3}{5}} \right]:\left( { - 3} \right) + \frac{1}{3} - \left( { - \frac{1}{6}} \right):\left( { - 2} \right)

b)B = \left( {\frac{2}{{25}} - 0,036} \right):\frac{{11}}{{50}} - \left[ {\left( {3\frac{1}{4} - 2\frac{4}{9}} \right)} \right].\frac{9}{{29}}

Gợi ý đáp án:

a)

\begin{array}{l}A = \left[ {\left( { - 0,5} \right) - \frac{3}{5}} \right]:\left( { - 3} \right) + \frac{1}{3} - \left( { - \frac{1}{6}} \right):\left( { - 2} \right)\\ = \left( {\frac{{ - 5}}{{10}} - \frac{6}{{10}}} \right).\frac{{ - 1}}{3} + \frac{1}{3} + \frac{1}{6}.\frac{{ - 1}}{2}\\ = \frac{{ - 11}}{{10}}.\frac{{ - 1}}{3} + \frac{1}{3} + \frac{1}{6}.\frac{{ - 1}}{2}\\ = \frac{{11}}{{30}} + \frac{1}{3} + \frac{{ - 1}}{{12}}\\ = \frac{{22}}{{60}} + \frac{{20}}{{60}} + \frac{{ - 5}}{{60}}\\ = \frac{{37}}{{60}}\end{array}

b)

\begin{array}{l}B = \left( {\frac{2}{{25}} - 0,036} \right):\frac{{11}}{{50}} - \left[ {\left( {3\frac{1}{4} - 2\frac{4}{9}} \right)} \right].\frac{9}{{29}}\\ = \left( {\frac{2}{{25}} - \frac{{36}}{{1000}}} \right).\frac{{50}}{{11}} - \left[ {\left( {\frac{{13}}{4} - \frac{{22}}{9}} \right)} \right].\frac{9}{{29}}\\ = \left( {\frac{{10}}{{125}} - \frac{4}{{125}}} \right).\frac{{50}}{{11}} - \left[ {\left( {\frac{{117}}{{36}} - \frac{{88}}{{36}}} \right)} \right].\frac{9}{{29}}\\ = \frac{{ - 6}}{{125}}.\frac{{50}}{{11}} - \frac{{29}}{{36}}.\frac{9}{{29}}\\ = \frac{{ - 12}}{{55}} - \frac{1}{4}\\ = \frac{{ - 48}}{{220}} - \frac{{55}}{{220}}\\ = \frac{{ - 103}}{{220}}\end{array}

Bài 5

Tìm x, biết:

a) - \frac{3}{5}.x = \frac{{12}}{{25}};

b)\frac{3}{5}x - \frac{3}{4} =  - 1\frac{1}{2};

c)\frac{2}{5} + \frac{3}{5}:x = 0,5;

d)\frac{3}{4} - \left( {x - \frac{1}{2}} \right) = 1\frac{2}{3}

e)2\frac{2}{{15}}:\left( {\frac{1}{3} - 5x} \right) =  - 2\frac{2}{5}

g){x^2} + \frac{1}{9} = \frac{5}{3}:3.

Gợi ý đáp án:

a)

\begin{array}{l} - \frac{3}{5}.x = \frac{{12}}{{25}}\\x = \frac{{12}}{{25}}:\frac{{ - 3}}{5}\\x = \frac{{12}}{{25}}.\frac{{ - 5}}{3}\\x = \frac{{ - 4}}{5}\end{array}

Vậy x = \frac{{ - 4}}{5}

b)

\begin{array}{l}\frac{3}{5}x - \frac{3}{4} =  - 1\frac{1}{2};\\\frac{3}{5}x = \frac{{ - 3}}{2} + \frac{3}{4}\\\frac{3}{5}x = \frac{{ - 3}}{4}\\x = \frac{{ - 3}}{4}:\frac{3}{5}\\x = \frac{{ - 5}}{4}\end{array}

Vậy x = \frac{{ - 5}}{4}

c)

\begin{array}{l}\frac{2}{5} + \frac{3}{5}:x = 0,5\\\frac{3}{5}:x = \frac{1}{2} - \frac{2}{5}\\\frac{3}{5}:x = \frac{1}{{10}}\\x = \frac{3}{5}:\frac{1}{{10}}\\x = 6\end{array}

Vậy x = 6.

d)

\begin{array}{l}\frac{3}{4} - \left( {x - \frac{1}{2}} \right) = 1\frac{2}{3}\\x - \frac{1}{2} = \frac{3}{4} - \frac{5}{3}\\x - \frac{1}{2} = \frac{{ - 11}}{{12}}\\x = \frac{{ - 11}}{{12}} + \frac{1}{2}\\x = \frac{{ - 5}}{{12}}\end{array}

Vậy x = \frac{{ - 5}}{{12}}

e)

\begin{array}{l}2\frac{2}{{15}}:\left( {\frac{1}{3} - 5x} \right) =  - 2\frac{2}{5}\\\frac{{32}}{{15}}:\left( {\frac{1}{3} - 5x} \right) =  - \frac{{12}}{5}\\\frac{1}{3} - 5x = \frac{{32}}{{15}}:\frac{{ - 12}}{5}\\\frac{1}{3} - 5x = \frac{{ - 8}}{9}\\5x = \frac{1}{3} + \frac{8}{9}\\5x = \frac{{11}}{9}\\x = \frac{{11}}{9}:5\\x = \frac{{11}}{{45}}\end{array}

Vậy x = \frac{{11}}{{45}}

g)

\begin{array}{l}{x^2} + \frac{1}{9} = \frac{5}{3}:3\\{x^2} + \frac{1}{9} = \frac{5}{9}\\{x^2} = \frac{5}{9} - \frac{1}{9}\\{x^2} = \frac{4}{9}\\x =  \pm \frac{2}{3}\end{array}

Vậy x =  \pm \frac{2}{3}

Bài 6

a) Tính diện tích hình thang ABCD có các kích thước như hình sau:

Bài 6

b) Hình thoi MNPQ có diện tích bằng diện tích hình thang ABCD ở câu a, đường chéo MP= \frac{{35}}{4}m. Tính độ dài NQ.

Bài 6

Gợi ý đáp án:

a) Diện tích hình thang là:

\left( {AB + DC} \right).AH:2 = \left( {\frac{{11}}{3} + \frac{{17}}{2}} \right).3:2 = \frac{{73}}{4}(cm2)

b) Ta có diện tích hình thoi MNPQ là \frac{{73}}{4}\,c{m^2}

Nên ta có:

\begin{array}{ccccc}{S_{MNPQ}} = \frac{{73}}{4} \Rightarrow MP.NQ:2 = \frac{{73}}{4}\\ \Rightarrow \frac{{35}}{4}.NQ:2 = \frac{{73}}{4}\\ \Rightarrow \frac{{35}}{8}.NQ= \frac{{73}}{4} \Rightarrow NQ = \frac{{73}}{4}:\frac{{35}}{8} = \frac{{146}}{{35}}\end{array}

Vậy NQ = \frac{{146}}{{35}}cm

Bài 7

Tìm số hữu tỉ a, biết rằng lấy a nhân với \frac{1}{2} rồi cộng với \frac{3}{4}, sau đó chia kết quả cho \frac{{ - 1}}{4} thì được số - 3\frac{3}{4}.

Gợi ý đáp án:

Ta có:

\begin{array}{l}\left( {a.\frac{1}{2} + \frac{3}{4}} \right):\frac{{ - 1}}{4} =  - 3\frac{3}{4}\\a.\frac{1}{2} + \frac{3}{4} = \frac{{ - 15}}{4}.\frac{{ - 1}}{4}\\a.\frac{1}{2} + \frac{3}{4} = \frac{{15}}{{16}}\\a.\frac{1}{2} = \frac{{15}}{{16}} - \frac{3}{4}\\a.\frac{1}{2} = \frac{3}{{16}}\\{\rm{a = }}\frac{3}{{16}}:\frac{1}{2}\\a = \frac{3}{8}\end{array}

Vậy a = \frac{3}{8}.

Chú ý: Khi lấy kết quả chia cho \frac{{ - 1}}{4} ta phải để dấu ngoặc.

Bài 8

Nhiệt độ ngoài trời đo được vào một ngày mùa đông tại New York (Mĩ) lúc 5 giờ chiều là 35,6 °F, lúc 10 giờ tối cùng ngày là 22,64 °F (theo: https://www.accuweatther.com).

Biết công thức chuyển đổi từ độ F sang độ C là: T\left( {^oC} \right){\rm{ }} = \frac{5}{9}.\left( {T\left( {^oF} \right){\rm{ }}--{\rm{ }}32} \right).

a) Hãy chuyển đổi các số đo nhiệt độ theo độ F nêu ở trên sang độ C.

b) Tính độ chênh lệch nhiệt độ từ 5 giờ chiều đến 10 giờ tối (theo đơn vị độ C).

Bài 8

Gợi ý đáp án:

a) Nhiệt độ tại New York (Mĩ) lúc 5h chiều là:

\frac{5}{9}.\left( {35,6 - 32} \right) = 2\left( {^oC} \right)

Nhiệt độ tại New York (Mĩ) lúc 10h tối là:

\frac{5}{9}.\left( {22,64 - 32} \right) =  - 5,2\left( {^oC} \right)

b) Độ chênh lệch nhiệt độ từ 5 giờ chiều đến 10 giờ tối là:

- 5,2 - 2 =  - 7,2\left( {^oC} \right)

Vậy từ nhiệt độ lúc 5h chiều giảm 7,2 độ C so với nhiệt độ lúc 10h tối.

Bài 9

Mẹ bạn Minh gửi tiết kiệm 300 000 000 đồng vào một ngân hàng theo thể thức kì hạn 1 năm. Hết thời

hạn 1 năm, mẹ bạn Minh nhận được cả vốn lẫn lãi là 321 600 000 đồng. Tính lãi suất ngân hàng theo thể thức gửi tiết kiệm này.

Gợi ý đáp án:

Số tiền lãi mẹ bạn Minh nhận được là:

321{\rm{ }}600{\rm{ }}000 - 300{\rm{ }}000{\rm{ }}000 = 21\,\,600\,\,000(đồng)
Lãi suất ngân hàng là:

21\,\,600\,\,000:300\,000\,\,000.100\%  = 7,2\%

Bài 10

Bác Thu mua ba món hàng ở một siêu thị: Món hàng thứ nhất giá 125 000 đồng và được giảm giá 30%; món hàng thứ hai giá 300 000 đồng và được giảm giá 15%; món hàng thứ ba được giảm giá 40%. Tổng số tiền bác Thu phải thanh toán là 692 500 đồng. Hỏi giá tiền món hàng thứ ba lúc chưa giảm giá là bao nhiêu?

Gợi ý đáp án:

Món hàng thứ nhất sau khi giảm có giá là:

125\,\,000.\left( {100 - 30} \right):100 = 87\,\,000(đồng)

Món hàng thứ hai sau khi giảm có giá là:

300\,000.\left( {100 - 15} \right):100 = 255\,\,000(đồng)

Giá tiền món hàng thứ ba khi đã giảm là:

692 500 – 87 000 – 255 000 = 35 050 (đồng)

Giá tiền món hàng thứ ba khi chưa giảm là:

35\,\,050.140:100 = \,49\,070 (đồng)

Bài 11

Nhân ngày 30/4, một cửa hàng thời trang giảm giá 20% cho tất cả các sản phẩm. Đặc biệt nếu khách hàng nào có thẻ khách hàng thân thiết của cửa hàng thì được giảm giá thêm 10% trên giá đã giảm.

a) Chị Thanh là khách hàng thân thiết của cửa hàng, chị đã đến cửa hàng mua một chiếc váy có giá niêm yết là 800 000 đồng. Hỏi chị Thanh phải trả bao nhiêu tiền cho chiếc váy đó?

b) Cô Minh cũng là một khách hàng thân thiết của cửa hàng, cô đã mua một chiếc túi xách và đã phải trả số tiền là 864 000 đồng. Hỏi giá ban đầu của chiếc túi xách đó là bao nhiêu?

Gợi ý đáp án:

a) Giá chiếc váy khi được giảm 20% (tức là còn 80% so với giá gốc) là:

800 000.80:100= 640 000 (đồng)

Giá chiếc váy khi được giảm tiếp 10% là:

640 000 .90:100= 576 000 (đồng)

Vậy chị Thanh phải trả 576 000 đồng cho chiếc váy

b) Giá của chiếc túi trước khi được giảm 10% là:

864\,000.110:100 = 950\,\,400(đồng)

Giá của chiếc túi trước khi được giảm 20% là:

950\,\,400.120:100 = 1\,\,140\,\,480 (đồng)

Vậy giá ban đầu của chiếc túi xách đó là 1 140 480 đồng.

Chia sẻ bởi: 👨 Tuyết Mai
Mời bạn đánh giá!
  • Lượt xem: 04
  • Dung lượng: 350,8 KB
Sắp xếp theo