Toán 11 Bài 4: Phương trình lượng giác cơ bản Giải Toán 11 Cánh diều trang 32, 33, 34, 35, 36, 37, 38, 39, 40

Toán lớp 11 tập 1 trang 32→40 Cánh diều là tài liệu vô cùng hữu ích mà Download.vn muốn giới thiệu đến quý thầy cô cùng các bạn học sinh lớp 11 tham khảo.

Giải Toán 11 Cánh diều Bài 4 Phương trình lượng giác cơ bản được biên soạn đầy đủ, chi tiết trả lời các câu hỏi phần bài tập cuối bài trang 40. Qua đó giúp các bạn học sinh có thể so sánh với kết quả mình đã làm. Vậy sau đây là nội dung chi tiết Toán 11 tập 1 Bài 4 Phương trình lượng giác cơ bản Cánh diều, mời các bạn cùng theo dõi tại đây.

Giải Toán 11 Tập 1 trang 40 Cánh diều

Bài 1 trang 40 

Giải phương trình:

a) sin(2\pi -\frac{\pi }{3})=-\frac{\sqrt{3}}{2}sin(2ππ3)=32;

b) sin(3x+\frac{\pi }{4})=-\frac{1}{2}sin(3x+π4)=12;

c) cos(\frac{x}{2}+\frac{\pi }{4})=\frac{\sqrt{3}}{2}cos(x2+π4)=32;

d) 2cos3x+5=32cos3x+5=3;

e) 3tanx=-\sqrt{3}3tanx=3;

g) cotx-3=\sqrt{3}(1-cotx)cotx3=3(1cotx).

Gợi ý đáp án

a) x=k\pix=kπ hoặc x=\frac{5\pi }{6}+k\pi \left ( k\in \mathbb{Z} \right )x=5π6+kπ(kZ);

b) x=-\frac{5\pi }{36}+\frac{k2\pi }{3}x=5π36+k2π3 hoặc x=\frac{11\pi }{36}+\frac{k2\pi }{3} \left ( k\in \mathbb{Z} \right )x=11π36+k2π3(kZ);

c) x=-\frac{\pi }{6}+k4\pix=π6+k4π hoặc x=-\frac{5\pi }{6}+k4\pi \left ( k\in \mathbb{Z} \right )x=5π6+k4π(kZ);

d) x=\frac{\pi }{3}+\frac{k2\pi }{3} \left ( k\in \mathbb{Z} \right )x=π3+k2π3(kZ);

e) x=-\frac{\pi }{6}+k\pi \left ( k\in \mathbb{Z} \right )x=π6+kπ(kZ);

g) x=\frac{\pi }{6}+k\pi \left ( k\in \mathbb{Z} \right )x=π6+kπ(kZ).

Bài 2 trang 40 

Giải phương trình:

a) sin(2x+\frac{\pi }{4})=sinxsin(2x+π4)=sinx;

b) sin2x=cos3xsin2x=cos3x;

c) cos^{2}2x=cos^{2}(x+\frac{\pi }{6})cos22x=cos2(x+π6).

Gợi ý đáp án

a) x=-\frac{\pi }{4}+k2\pix=π4+k2π hoặc x=\frac{\pi }{4}+\frac{k2\pi }{3} \left ( k\in \mathbb{Z} \right )x=π4+k2π3(kZ)

b) cos(\frac{\pi }{2}-2x)=cos3x\Leftrightarrow x=\frac{\pi }{10}-\frac{k2\pi }{5}cos(π22x)=cos3xx=π10k2π5 hoặc x=-\frac{\pi }{2}+k2\pi \left ( k\in \mathbb{Z} \right )x=π2+k2π(kZ)

c) cos2x=\pm cos(x+\frac{\pi }{6})\Leftrightarrow x=\frac{\pi }{6}+k2\picos2x=±cos(x+π6)x=π6+k2π hoặc x=-\frac{\pi }{18}+\frac{k2\pi }{3}x=π18+k2π3 hoặc x=\frac{5\pi }{18}+\frac{k2\pi }{3}x=5π18+k2π3 hoặc x=-\frac{5\pi }{6}+k2\pi \left ( k\in \mathbb{Z} \right )x=5π6+k2π(kZ)

Bài 3 trang 40

Dùng đồ thị hàm số y=sinx, y=cosxy=sinx,y=cosx để xác định số nghiệm của phương trình:

a) 3sinx+2=03sinx+2=0 trên khoảng (-\frac{5\pi }{2};\frac{5\pi }{2})(5π2;5π2);

b) cosx=0cosx=0 trên đoạn \left [ -\frac{5\pi }{2};\frac{5\pi }{2} \right ][5π2;5π2].

Gợi ý đáp án

a) Số nghiệm của phương trình 3sinx+2=03sinx+2=0 trên khoảng (-\frac{5\pi }{2};\frac{5\pi }{2})(5π2;5π2) là 5 nghiệm.

b) Số nghiệm của phương trình cosx=0cosx=0 trên đoạn \left [ -\frac{5\pi }{2};\frac{5\pi }{2} \right ][5π2;5π2] là 6 nghiệm.

Bài 4 trang 40

Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40^{\circ}40 Bắc trong ngày thứ tt của một năm không nhuận được cho bởi hàm số:

d(t)=3sin\left [ \frac{\pi }{182}(t-80) \right ]+12d(t)=3sin[π182(t80)]+12 với t\in \mathbb{Z}tZ0< t\leq 3650<t365.

a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm?

b) Vào ngày nào trong năm thì thành phố A có đúng 9 giờ có ánh sáng mặt trời?

c) Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?

Gợi ý đáp án

a) sin\left [ \frac{\pi }{182}(t-80) \right ]=0\Leftrightarrow t=80+182k, -\frac{40}{91}< k\leq \frac{285}{182}sin[π182(t80)]=0t=80+182k,4091<k285182

b) sin\left [ \frac{\pi }{182}(t-80) \right ]=-1\Leftrightarrow t=-11+364k, \frac{11}{364}< k\leq \frac{94}{91}sin[π182(t80)]=1t=11+364k,11364<k9491

c) sin\left [ \frac{\pi }{182}(t-80) \right ]=1\Leftrightarrow t=171+364k, -\frac{171}{364}< k\leq \frac{97}{182}sin[π182(t80)]=1t=171+364k,171364<k97182.

Bài 5 trang 40

Hội Lim (tỉnh Bắc Ninh) được tổ chức vào mùa xuân thường có trò chơi đánh đu. Khi người chơi đu nhún đều, cây đu sẽ đưa người chơi đu dao động quanh vị trí cân bằng (Hình 38). Nghiên cứu trò chơi này, người ta thấy khoảng cách hh (m) từ vị trí người chơi đu đến vị trí cân bằng được biểu diễn qua thời gian tt (s) (với t\geq 0t0) bởi hệ thức h=\left | d \right |h=|d| với d=3cos\left [ \frac{\pi }{3}(2t-1) \right ]d=3cos[π3(2t1)], trong đó ta quy ước d> 0d>0 khi vị trí cân bằng ở phía sau lưng người chơi đu và d<  0d<0 trong trường hợp ngược lại (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020). Vào thời gian tt nào thì khoảng cách hh là 3 m; 0 m?

Gợi ý đáp án

h=3\Leftrightarrow \left | 3cos\left [ \frac{\pi }{3}(2t-1) \right ] \right |=3 \Leftrightarrow 3cos\left [ \frac{\pi }{3}(2t-1) \right ]=\pm 3 \Leftrightarrow t=\frac{1}{2}+3kh=3|3cos[π3(2t1)]|=33cos[π3(2t1)]=±3t=12+3k hoặc t=2+3k \left ( k\in \mathbb{Z} \right )t=2+3k(kZ).

h=0 \Leftrightarrow 3cos\left [ \frac{\pi }{3}(2t-1) \right ] =0\Leftrightarrow t=\frac{3\pi }{4}+\frac{1}{2}+\frac{3k}{2} \left ( k\in \mathbb{Z} \right )h=03cos[π3(2t1)]=0t=3π4+12+3k2(kZ).

Chia sẻ bởi: 👨 Trịnh Thị Thanh
Liên kết tải về
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
👨
    Đóng
    Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm
    Chia sẻ
    Chia sẻ FacebookChia sẻ Twitter
    Đóng