Toán 7 Bài 25: Đa thức một biến Giải Toán lớp 7 trang 25 sách Kết nối tri thức với cuộc sống - Tập 2

Giải bài tập SGK Toán 7 Tập 2 trang 25, 26, 27, 28, 29, 30 sách Kết nối tri thức với cuộc sống giúp các em học sinh lớp 7 xem gợi ý giải các bài tập của Bài 25: Đa thức một biến.

Thông qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài 25 Chương VII - Biểu thức đại số và đa thức một biến trong sách giáo khoa Toán 7 Tập 2 Kết nối tri thức với cuộc sống. Đồng thời, cũng giúp thầy cô tham khảo để soạn giáo án cho học sinh của mình theo chương trình mới. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Download.vn nhé:

Giải Toán 7 bài 25: Đa thức một biến sách Kết nối tri thức với cuộc sống

Giải Toán 7 Kết nối tri thức với cuộc sống trang 30 tập 2

Bài 7.5

a) Tính \left( {\dfrac{1}{2}{x^3}} \right).\left( {4{x^2}} \right)\(\left( {\dfrac{1}{2}{x^3}} \right).\left( {4{x^2}} \right)\). Tìm hệ số và bậc của đơn thức nhận được.

b) Tính \dfrac{1}{2}{x^3} - \dfrac{5}{2}{x^3}\(\dfrac{1}{2}{x^3} - \dfrac{5}{2}{x^3}\). Tìm hệ số và bậc của đơn thức nhận được.

Gợi ý đáp án:

a) \left( {\dfrac{1}{2}{x^3}} \right).\left( {4{x^2}} \right) = \left( {\dfrac{1}{2}.4} \right).\left( {{x^3}.{x^2}} \right) = 2.{x^5}\(a) \left( {\dfrac{1}{2}{x^3}} \right).\left( {4{x^2}} \right) = \left( {\dfrac{1}{2}.4} \right).\left( {{x^3}.{x^2}} \right) = 2.{x^5}\).

Hệ số: 2

Bậc: 5

b) \dfrac{1}{2}{x^3} - \dfrac{5}{2}{x^3} = \left( {\dfrac{1}{2} - \dfrac{5}{2}} \right){x^3} = \dfrac{{ - 4}}{2}.{x^3} =  - 2{x^3}\(b) \dfrac{1}{2}{x^3} - \dfrac{5}{2}{x^3} = \left( {\dfrac{1}{2} - \dfrac{5}{2}} \right){x^3} = \dfrac{{ - 4}}{2}.{x^3} = - 2{x^3}\)

Hệ số: -2

Bậc: 3

Bài 7.6

Cho hai đa thức:

\begin{array}{l}A = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\B = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\end{array}\(\begin{array}{l}A = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\B = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\end{array}\)

a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm của biến.

b) Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho.

Gợi ý đáp án:

a)

\begin{array}{l}A(x) = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\ =  - 7{x^4} + {x^3} - 4{x^2} + \left( {\dfrac{3}{2}x + \dfrac{1}{2}x} \right) + 9\\ =  - 7{x^4} + {x^3} - 4{x^2} + 2x + 9\\B(x) = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\\ = \left( {{x^5} - {x^5}} \right) + 8{x^4} + \left( { - 3{x^2} - 5{x^2}} \right) + x - 7\\ = 0 + 8{x^4} + ( - 8{x^2}) + x - 7\\ = 8{x^4} - 8{x^2} + x - 7\end{array}\(\begin{array}{l}A(x) = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + \left( {\dfrac{3}{2}x + \dfrac{1}{2}x} \right) + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + 2x + 9\\B(x) = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\\ = \left( {{x^5} - {x^5}} \right) + 8{x^4} + \left( { - 3{x^2} - 5{x^2}} \right) + x - 7\\ = 0 + 8{x^4} + ( - 8{x^2}) + x - 7\\ = 8{x^4} - 8{x^2} + x - 7\end{array}\)

b) * Đa thức A(x):

  • Bậc của đa thức là: 4
  • Hệ số cao nhất là: -7
  • Hệ số tự do là: 9

* Đa thức B(x):

  • Bậc của đa thức là: 4
  • Hệ số cao nhất là: 8
  • Hệ số tự do là: -7

Bài 7.7

Cho hai đa thức:

\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\end{array}\(\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\end{array}\)

a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm của biến.

b) Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho.

Gợi ý đáp án:

a)

\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\ = \left( {2{x^4} - 2{x^4}} \right) + \left( {5{x^3} - {x^3} - 4{x^3}} \right) + \left( { - {x^2} + 3{x^2}} \right)\\ = 0 + 0 + 2{x^2}\\ = 2{x^2}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\\ = \left( { - 4{x^3} + 4{x^3}} \right) + 8{x^2} + \left( {3x - 5x} \right) + 5\\ = 0 + 8{x^2} + ( - 2x) + 5\\ = 8{x^2} - 2x + 5\end{array}\(\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\ = \left( {2{x^4} - 2{x^4}} \right) + \left( {5{x^3} - {x^3} - 4{x^3}} \right) + \left( { - {x^2} + 3{x^2}} \right)\\ = 0 + 0 + 2{x^2}\\ = 2{x^2}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\\ = \left( { - 4{x^3} + 4{x^3}} \right) + 8{x^2} + \left( {3x - 5x} \right) + 5\\ = 0 + 8{x^2} + ( - 2x) + 5\\ = 8{x^2} - 2x + 5\end{array}\)

b) P(1) = 2.12 = 2

P(0) = 2. 02 = 0

Q(-1) = 8.(-1)2 – 2.(-1) +5 = 8 +2 +5 =15

Q(0) = 8.02 – 2.0 + 5 = 5

Bài 7.8

Người ta dùng hai máy bơm để bơm nước vào một bể chứa nước. Máy thứ nhất bơm mỗi giờ được 22 m3 nước. Máy thứ hai bơm mỗi giờ được 16 m3 nước. Sau khi cả hai máy chạy trong x giờ, người ta tắt máy thứ nhất và để máy thứ hai chạy thêm 0,5 giờ nữa thì bể nước đầy.

Hãy viết đa thức (biến x) biểu thị dung tích bể (m3). Biết rằng trước khi bơm, trong bể có 1,5 m3 nước. Tìm hệ số cao nhất và hệ số tự do của đa thức đó.

Gợi ý đáp án:

Đa thức V(x) = 22.x + 16.x + 0,5.16 + 1,5 = (22+16).x + 8 + 1,5 = 38.x + 9,5

Hệ số cao nhất: 38

Hệ số tự do: 9,5

Bài 7.9

Viết đa thức F(x) thỏa mãn đồng thời các điều kiện sau:

  • Bậc của F(x) bằng 3
  • Hệ số của x2 bằng hệ số của x và bằng 2
  • Hệ số cao nhất của F(x) bằng -6 và hệ số tự do bằng 3.

Gợi ý đáp án:

F(x) = -6x3 + 2x2 + 2x + 3

Bài 7.10

Kiểm tra xem:

a) x =  - \dfrac{1}{8}\(x = - \dfrac{1}{8}\)có phải là nghiệm của đa thức P(x) = 4x + \dfrac{1}{2}\(P(x) = 4x + \dfrac{1}{2}\) không?

b) Trong ba số 1; -1 và 2, số nào là nghiệm của đa thức Q(x) = x2 + x – 2?

Gợi ý đáp án:

a) Ta có: P( - \dfrac{1}{8}) = 4.( - \dfrac{1}{8})+ \dfrac{1}{2}= (-\dfrac{1}{2}) + \dfrac{1}{2} = 0\(P( - \dfrac{1}{8}) = 4.( - \dfrac{1}{8})+ \dfrac{1}{2}= (-\dfrac{1}{2}) + \dfrac{1}{2} = 0\)

Vậy x =  - \dfrac{1}{8}\(x = - \dfrac{1}{8}\) là nghiệm của đa thức P(x) = 4x + \dfrac{1}{2}\(P(x) = 4x + \dfrac{1}{2}\)

b) Q(1) = 12 +1 – 2 = 0

Q(-1) = (-1)2 + (-1) – 2 = -2

Q(2) = 22 + 2 – 2 = 4

Vì Q(1) = 0 nên x = 1 là nghiệm của Q(x)

Bài 7.11

Mẹ cho Quỳnh 100 nghìn đồng. Quỳnh mua một bộ dụng cụ học tập có giá 37 nghìn đồng và một cuốn sách tham khảo môn Toán với giá x (nghìn đồng).

a) Hãy tìm đa thức ( biến x) biểu thị số tiền Quỳnh còn lại (đơn vị: nghìn đồng). Tìm bậc của đa thức đó.

b) Sau khi mua sách thì Quỳnh tiêu vừa hết số tiền mẹ cho. Hỏi giá tiền của cuốn sách là bao nhiêu?

Gợi ý đáp án:

a) Đa thức C(x) = 100 – 37 – x = - x + 63

Bậc của đa thức là 1

b) Sau khi mua sách, ta có số tiền còn lại là 0 hay – x + 63 = 0

⇒ 63 = x hay x = 63

Vậy giá tiền cuốn sách là 63 nghìn đồng

Chia sẻ bởi: 👨 Lê Thị tuyết Mai
Liên kết tải về

Link Download chính thức:

Sắp xếp theo
👨
    Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm