cos15^{\circ}=cos(45^{\circ}-30^{\circ})=cos45^{\circ}cos30^{\circ}+sin45^{\circ}sin30^{\circ}cos15=cos(4530)=cos45cos30+sin45sin30

=\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}\times \frac{1}{2}=\frac{\sqrt{6}+\sqrt{2}}{4}=22×32+22×12=6+24

sin15^{\circ}=sin(45^{\circ}-30^{\circ})=sin45^{\circ}cos30^{\circ}-cos45^{\circ}sin30^{\circ}sin15=sin(4530)=sin45cos30cos45sin30

=\frac{\sqrt{2}}{2}\times  \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}\times \frac{1}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}=22×3222×12=624

tan15^{\circ}=tan(45^{\circ}-30^{\circ})=\frac{tan45^{\circ}-tan30^{\circ}}{1+tan45^{\circ}tan30^{\circ}}tan15=tan(4530)=tan45tan301+tan45tan30

=\frac{1-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}=2-\sqrt{3}=1331+33=23