-
Tất cả
-
Học tập
-
Lớp 1
-
Lớp 2
-
Lớp 3
-
Lớp 4
-
Lớp 5
-
Thi vào 6
-
Lớp 6
-
Lớp 7
-
Lớp 8
-
Lớp 9
-
Thi vào 10
-
Lớp 10
-
Lớp 11
-
Lớp 12
-
Thi THPT QG
-
Thi ĐGNL
-
Đề thi
-
Thi IOE
-
Thi Violympic
-
Trạng nguyên Tiếng Việt
-
Văn học
-
Sách điện tử
-
Học tiếng Anh
-
Tiếng Nhật
-
Mầm non
-
Cao đẳng - Đại học
-
Giáo án
-
Bài giảng điện tử
-
Cao học
-
Tài liệu Giáo viên
-
Công thức toán
-
-
Tài liệu
-
Hướng dẫn
-
Toán 11 Bài 4: Hai mặt phẳng vuông góc Giải Toán 11 Cánh diều trang 95, 96, 97, 98, 99 Tập 2
Toán lớp 11 trang 99 Cánh diều tập 2 là tài liệu vô cùng hữu ích mà Download.vn muốn giới thiệu đến quý thầy cô cùng các bạn học sinh lớp 11 tham khảo.
Giải Toán 11 Cánh diều Bài 4 Hai mặt phẳng vuông góc được biên soạn đầy đủ, chi tiết trả lời các câu hỏi phần bài tập trang 95, 96, 97, 98, 99. Qua đó giúp các bạn học sinh có thể so sánh với kết quả mình đã làm. Vậy sau đây là nội dung chi tiết giải Toán 11 trang 99 Cánh diều Tập 2, mời các bạn cùng theo dõi tại đây.
Giải Toán 11 trang 99 Cánh diều - Tập 2
Bài 1
Quan sát ba mặt phẳng (P), (Q), (R) ở Hình 57, chỉ ra hai cặp mặt phẳng mà mỗi cặp gồm hai mặt phẳng vuông góc với nhau. Hãy sử dụng kí hiệu để viết những kết quả đó.
Gợi ý đáp án
(P) ⊥ (R)
(Q) ⊥ (R)
Bài 2
Chứng minh: Nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia
Gợi ý đáp án
Giả sử hai mặt phẳng vuông góc với nhau là (P) và (Q), ta cần chứng minh rằng tồn tại một đường thẳng tương ứng với đường thẳng vuông góc với mặt phẳng (Q) và nằm trên mặt phẳng (P).
Gọi O là giao điểm của hai mặt phẳng (P) và (Q).
Ta lấy một điểm A bất kỳ trên mặt phẳng (Q), và kẻ đường thẳng AO.
Do đó, đường thẳng AO nằm trên mặt phẳng (P), và vì (P) vuông góc với (Q) tại O, nên đường thẳng AO vuông góc với mặt phẳng (Q) tại điểm A.
Vậy ta đã chứng minh được rằng tồn tại một đường thẳng nằm trên mặt phẳng (P) và vuông góc với mặt phẳng (Q), như yêu cầu.
Bài 3
Chứng minh các định lí sau:
a) Nếu hai mặt phẳng (phân biệt) cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau theo một giao tuyến vuông góc với mặt phẳng thứ ba đó;
b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai
mặt phẳng đó thì vuông góc với mặt phẳng còn lại.
Gợi ý đáp án
a) Giả sử có hai mặt phẳng vuông góc với một mặt phẳng thứ ba. Khi đó, các mặt phẳng này sẽ tạo thành một hình hộp chữ nhật. Giả sử chúng không song song với nhau, tức là cắt nhau theo một đường thẳng không vuông góc với mặt phẳng thứ ba. Khi đó, ta có thể kết nối hai điểm thuộc hai mặt phẳng vuông góc này và kết quả là ta sẽ thu được một đường thẳng không vuông góc với mặt phẳng thứ ba, mâu thuẫn với giả thiết ban đầu. Vì vậy, hai mặt phẳng này phải song song với nhau hoặc cắt nhau theo một giao tuyến vuông góc với mặt phẳng thứ ba đó.
b) Giả sử có hai mặt phẳng song song và một mặt phẳng vuông góc với một trong hai mặt phẳng đó. Khi đó, đường thẳng vuông góc với mặt phẳng đó sẽ song song với mặt phẳng còn lại. Điều này có thể được chứng minh như sau: Ta chọn một điểm bất kỳ trên mặt phẳng đó, và sau đó kết nối điểm đó với một điểm bất kỳ trên mặt phẳng còn lại. Khi đó, ta thu được một đường thẳng nằm trên mặt phẳng đó và cắt mặt phẳng còn lại theo một giao tuyến. Vì hai mặt phẳng song song nên đường thẳng này sẽ song song với mặt phẳng còn lại, và do đó đường thẳng này cũng sẽ vuông góc với mặt phẳng còn lại. Vậy mặt phẳng ban đầu cũng phải vuông góc với mặt phẳng còn lại.
Bài 4
Cho một đường thẳng không vuông góc với mặt phẳng cho trước. Chứng minh rằng tồn tại duy nhất một mặt phẳng chứa đường thẳng đó và vuông góc với mặt phẳng đã cho
Gợi ý đáp án
Giả sử đường thẳng đó là d và mặt phẳng cho trước là P. Gọi A là một điểm trên đường thẳng d. Theo định nghĩa, ta có thể vẽ một đường thẳng vuông góc với mặt phẳng P và đi qua điểm A, gọi đường thẳng đó là d'. Vì d' và P vuông góc với nhau nên chúng tạo thành một góc vuông tại A.
Để chứng minh tồn tại mặt phẳng vuông góc với P và chứa đường thẳng d, ta chỉ cần chứng minh rằng mặt phẳng chứa d' cũng vuông góc với P. Điều này tương đương với việc chứng minh rằng đường thẳng d nằm trên mặt phẳng chứa d' và vuông góc với mặt phẳng P.
Giả sử tồn tại một mặt phẳng khác Q cũng vuông góc với mặt phẳng P và chứa đường thẳng d. Vì d nằm trên Q, nên d' cũng nằm trên Q, vì nó là đường thẳng vuông góc với mặt phẳng P và qua điểm A trên d. Như vậy, d' và Q cùng chứa đường thẳng d, do đó chúng trùng nhau, suy ra Q cũng chứa d'. Tức là mặt phẳng Q trùng với mặt phẳng chứa d', và vì thế mặt phẳng Q cũng vuông góc với P.
Vậy, ta đã chứng minh được rằng tồn tại duy nhất một mặt phẳng vuông góc với mặt phẳng P và chứa đường thẳng d.
Bài 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S. Gọi M là trung điểm của AB. Chứng minh rằng:
a) SM ⊥ (ABCD)
b) AD ⊥ (SAB)
c) (SAD) ⊥ (SBC)
Gợi ý đáp án
a) Có (SAB) ⊥ (ABCD)
SM ⊥ (ABCD)
b) Có ABCD là hình chữ nhật
=> AD ⊥ AB
Có SM ⊥ (ABCD) => AD ⊥ SM
=> AD ⊥ (SAB)
c) - Có SA ⊥ SB (vì SAB vuông cân tại S)
SA ⊥ BC (vì SA ⊥ (ABCD) )
=> SA ⊥ ( SBC)
=> (SAD) ⊥ (SBC)

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Tài liệu tham khảo khác
Lớp 11 tải nhiều
Có thể bạn quan tâm
-
Các chất tham gia phản ứng tráng gương
50.000+ -
Đáp án tự luận Mô đun 8 THCS - Đáp án tập huấn Module 8
100.000+ -
Nghị luận về câu nói Trong rừng có rất nhiều lối đi, ta chọn lối đi chưa có dấu chân người
50.000+ -
Cách phân biệt Oxit axit và Oxit bazơ
50.000+ -
Văn mẫu lớp 12: Nghị luận về vấn đề ô nhiễm không khí hiện nay (Dàn ý + 6 Mẫu)
100.000+ 3 -
Tổng hợp công thức Hóa học lớp 12 - Các công thức Hóa học 12
100.000+ -
Điểm chuẩn lớp 10 năm 2024 Thanh Hóa
50.000+ 1 -
Báo cáo thu, nộp Đảng phí - Mẫu báo cáo thu, nộp Đảng phí mới nhất
10.000+ -
Bài thu hoạch bồi dưỡng thường xuyên Giáo viên phổ thông 2024
100.000+ -
Bài tập cuối khóa Mô đun 9 THCS (9 môn)
10.000+
Mới nhất trong tuần
-
Chương 1: Hàm số lượng giác và phương trình lượng giác
-
Chương 2: Dãy số. Cấp số cộng và cấp số nhân
-
Chương 3: Giới hạn. Hàm số liên tục
-
Hoạt động thực hành và trải nghiệm
-
Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
-
Chương 5: Một số yếu tố thống kê và xác suất
-
Chương 6: Hàm số mũ và hàm số lôgarit
-
Chương 7: Đạo hàm
-
Chương 8: Quan hệ vuông góc trong không gian. Phép chiếu vuông góc
-
Hoạt động thực hành và trải nghiệm
- Không tìm thấy