Toán lớp 5: Luyện tập trang 14 Giải Toán lớp 5 trang 14
Giải Toán lớp 5: Luyện tập giúp các em học sinh lớp 5 tham khảo đáp án, hướng dẫn giải chi tiết 3 bài tập trong SGK Toán 5 trang 14. Qua đó, giúp các em học sinh ôn tập, củng cố lại kiến thức, rèn luyện kỹ năng giải Toán lớp 5 của mình thật thành thạo.
Đồng thời, cũng giúp thầy cô tham khảo để soạn giáo án bài Luyện tập trang 14 của Chương 1 Toán lớp 5 cho học sinh của mình. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Download.vn:
Giải bài tập Toán 5 bài Luyện tập trang 14
Đáp án Toán 5 trang 14
Bài 1: \(\frac{13}{5}\); \(\frac{49}{9}\); \(\frac{75}{8}\); \(\frac{127}{10}\)
Bài 2: a) >; b) <; c) >; d) =
Bài 3: \(\frac{17}{6}\); \(\frac{23}{21}\); 14; \(\frac{14}{9}\)
Hướng dẫn giải bài tập Toán 5 trang 14
Bài 1
Chuyển các hỗn số sau thành phân số:
\(2\dfrac{3}{5} ;\) \(5\dfrac{4}{9} ;\) \(9\dfrac{3}{8} ;\) \(12\dfrac{7}{10}.\)
Gợi ý đáp án:
\(\displaystyle 2\dfrac{3}{5} = {{2 \times 5 + 3} \over 5} =\dfrac{13}{5}\)
\(\displaystyle 5\dfrac{4}{9} = {{5 \times 9 + 4} \over 9} =\dfrac{49}{9}\)
\(\displaystyle 9\dfrac{3}{8}= {{9 \times 8 + 3} \over 8} =\dfrac{75}{8}\)
\(\displaystyle 12\dfrac{7}{10} = {{12 \times 10 + 7} \over {10}} =\dfrac{127}{10}\)
Bài 2
So sánh các hỗn số:
a) \(3\dfrac{9}{{10}}\) và \(2\dfrac{9}{{10}} ;\)
c) \(5\dfrac{1}{{10}}\) và \(2\dfrac{9}{{10}} ;\)
b) \(3\dfrac{4}{{10}}\) và \(3\dfrac{9}{{10}};\)
d) \(3\dfrac{4}{{10}}\) và \(3\dfrac{2}{5} .\)
Gợi ý đáp án:
a) \(3\dfrac{9}{{10}} = \dfrac{{39}}{{10}}\;;\;\;2\dfrac{9}{{10}} = \dfrac{{29}}{{10}}\)
Mà \(\dfrac{{39}}{{10}} > {\rm{ }}\dfrac{{29}}{{10}}\). Vậy \(3\dfrac{9}{{10}} > 2\dfrac{9}{{10}}\)
(Hoặc: Ta có: 3> 2. Vậy: \(3\dfrac{9}{{10}} > 2\dfrac{9}{{10}}\))
b) \(3\dfrac{4}{{10}} = \dfrac{{34}}{{10}}\;;\;\;3\dfrac{9}{{10}} = \dfrac{{39}}{{10}}\)
Mà \(\dfrac{{34}}{{10}} < \dfrac{{39}}{{10}}\). Vậy: \(3\dfrac{4}{{10}} < {\rm{ }}3\dfrac{9}{{10}}\)
(Hoặc: Ta có: 3= 3 và \(\dfrac{{4}}{{10}} < \dfrac{{9}}{{10}}\). Vậy: \(3 \dfrac{{4}}{{10}} < 3 \dfrac{{9}}{{10}}\))
c) \(5\dfrac{1}{{10}} = \dfrac{{51}}{{10}}\;;\;\;2\dfrac{9}{{10}} = \dfrac{{29}}{{10}}\).
Mà \(\dfrac{{51}}{{10}} > {\rm{ }}\dfrac{{29}}{{10}}\). Vậy: \(5\dfrac{1}{{10}} > {\rm{ }}2\dfrac{9}{{10}}\).
(Hoặc: Ta có: 5> 2. Vậy: \(5\dfrac{1}{{10}} > {\rm{ }}2\dfrac{9}{{10}}\))
d) \(3\dfrac{4}{{10}} = \dfrac{{34}}{{10}} = \dfrac{{17}}{5}\;;\;\;3\dfrac{2}{5} = \dfrac{{17}}{5}\)
Mà \(\dfrac{{17}}{5} = \dfrac{{17}}{5}\). Vậy: \(3\dfrac{4}{{10}} = {\rm{ }}3\dfrac{2}{5}\).
(Hoặc: Ta có: 3=3 và \(\dfrac{{4}}{{10}} = \dfrac{{4:2}}{{10:2}} = \dfrac{2}{5}\). Vậy: \(3\dfrac{4}{{10}} = {\rm{ }}3\dfrac{2}{5}\))
Bài 3
Chuyển các hỗn số sau thành phân số rồi thực hiện phép tính:
a) \(1\dfrac{1}{2}+1\dfrac{1}{3}\) ; b) \(2\dfrac{2}{3}-1\dfrac{4}{7}\); c) \(2\dfrac{2}{3} \times 5\dfrac{1}{4}\) ; d) \(3\dfrac{1}{2}:2\dfrac{1}{4}\).
Gợi ý đáp án:
a) \(1\dfrac{1}{2}+1\dfrac{1}{3} =\dfrac{3}{2}+\dfrac{4}{3}=\dfrac{9}{6}+\dfrac{8}{6}=\dfrac{17}{6}\)
b) \(2\dfrac{2}{3}-1\dfrac{4}{7} =\dfrac{8}{3}-\dfrac{11}{7}=\dfrac{56}{21}-\dfrac{33}{21}=\dfrac{23}{21}\)
c) \(2\dfrac{2}{3} \times 5\dfrac{1}{4} =\dfrac{8}{3}\times \dfrac{21}{4}=\dfrac{8 \times 21}{3 \times 4}= \dfrac{4 \times 2 \times 7 \times 3}{3 \times 4}=14\)
d) \(3\dfrac{1}{2}:2\dfrac{1}{4}=\dfrac{7}{2}:\dfrac{9}{4}=\dfrac{7}{2} \times \dfrac{4}{9}= \dfrac{28}{18}=\dfrac{14}{9}\)