Phương pháp giải các dạng Tích phân thường gặp Tài liệu ôn tập môn Toán lớp 12
Với mong muốn đem đến cho các bạn học sinh lớp 12 có thêm nhiều tài liệu học tập môn Toán, Download.vn xin giới thiệu tài liệu Phương pháp giải các dạng Tích phân thường gặp.
Đây là tài liệu vô cùng hữu ích, gồm 26 trang giới thiệu và hướng dẫn phương pháp giải các dạng tích phân thường gặp, đây là các dạng tích phân thương có trong đề thi THPT Quốc gia. Sau đây là nội dung chi tiết tài liệu, mời các bạn cùng tham khảo và tải tài liệu tại đây.
Phương pháp giải các dạng Tích phân thường gặp
1
TÍCH PHÂN
I.CÁC PHƢƠNG PHÁP TÍNH TÍCH PHÂN
1. Tính tích phân bằng định nghĩa ,tính chất và bảng nguyên hàm cơ bản
2.Phƣơng pháp tích phân từng phần.
Định lí . Nếu u(x) và v(x) là các hàm số có đạo hàm liên tục trên
;ab
thì:
''
( ) ( ) ( ) ( ) ( ) ( )
bb
aa
b
u x v x dx u x v x v x u x dx
a
hay
bb
aa
b
udv uv vdu
a
.
Áp dụng công thức trên ta có qui tắc công thức tích phân từng phần sau:
Bước 1: Viết f(x)dx dưới dạng
'
udv uvdx
bằng cách chọn một phần thích hợp
của f(x) làm u(x) và phần còn lại
'
( ) .dv v x dx
Bước 2: Tính
'
du udx
và
'
()v dv v x dx
.
Bước 3: Tính
'
bb
aa
vdu vu dx
và
b
uv
a
.
Bước 5: Áp dụng công thức trên.
Ví dụ 5: a)Tính tích phân
3
2
1
3 ln x
I dx
(x 1)
(ĐH-KB-2009)
3 3 3
2 2 2
1 1 1
3
3
1
2
1
1
3
2
2
1
3 ln x dx ln x
I dx 3 dx
(x 1) (x 1) (x 1)
dx 3 3
I3
(x 1) (x 1) 4
ln x
I dx
(x 1)
Đặt u = lnx
dx
du
x
2
dx
dv .
(x 1)
Chọn
1
v
x1
3
3 3 3
2
1
1 1 1
lnx dx ln3 dx dx ln3 3
I ln
x 1 x(x 1) 4 x x 1 4 2
2
Vậy :
3
I (1 ln3) ln2
4
b) Tính
1
ln
e
x xdx
Giải: Đặt
lnux
dv xdx
2
2
dx
du
x
x
v
2 2 2 2
11
11
ln ln
11
2 2 2 4 4
ee
ee
x e x e
x xdx x xdx
.
Ví dụ 6: Tính các tích phân sau:
a)
2
5
1
ln x
dx
x
b)
2
0
cosx xdx
c)
1
0
x
xe dx
d)
2
0
cos
x
e xdx
Giải: a) Đặt
5
4
ln
1
1
4
dx
ux
du
x
dv dx
v
x
x
. Do đó:
2
2
22
5 4 5 4
1
11
1
ln ln 1 ln2 1 1 15 4ln2
4 4 64 4 4 256
x x dx
dx
x x x x
.
b) Đặt
cos sin
u x du dx
dv xdx v x
. Do đó:
22
00
cos sin sin cos 1
22
22
00
x xdx x x xdx x
.
c)Đặt
xx
u x du dx
dv e dx v e
. Do đó:
11
00
11
11
00
x x x x
xe dx xe e dx e e e e
.
3
d) Đặt
cos sin
xx
u e du e dx
dv xdx v x
22
00
cos sin sin
2
0
x x x
e xdx e x e xdx
.
Đặt
11
11
sin cos
xx
u e du e dx
dv xdx v x
22
2
00
cos cos cos
2
0
x x x
e xdx e e x e xdx
.
22
2
2
00
1
2 cos 1 cos .
2
xx
e
e xdx e e xdx
*Cách đặt u và dv trong phương pháp tích phân từng phần.
()
b
x
a
P x e dx
( )ln
b
a
P x xdx
( )cos
b
a
P x xdx
cos
b
x
a
e xdx
u
P(x)
lnx
P(x)
x
e
dv
x
e dx
P(x)dx
cosxdx
cosxdx
Chú ý: Điều quan trọng khi sử dụng công thức tích phân từng phần là làm thế nào để chọn
u và
'
dv vdx
thích hợp trong biểu thức dưới dấu tích phân f(x)dx. Nói chung nên chọn
u là phần của f(x) mà khi lấy đạo hàm thì đơn giản, chọn
'
dv vdx
là phần của f(x)dx là
vi phân một hàm số đã biết hoặc có nguyên hàm dễ tìm.
Có ba dạng tích phân thường được áp dụng tích phân từng phần:
Liên kết tải về
Link Download chính thức:
Phương pháp giải các dạng Tích phân thường gặp Download
Có thể bạn quan tâm
-
Văn mẫu lớp 11: Phân tích ba lần Chí Phèo đến nhà Bá Kiến (Dàn ý + 8 Mẫu)
-
Tập làm văn lớp 5: Tả em trai của em
-
Đoạn văn Tiếng Anh về một hoạt động ở trường (4 mẫu)
-
Soạn bài Ôn tập trang 95 - Chân trời sáng tạo 7
-
Bài viết số 7 lớp 8 đề 3: Hãy nói không với các tệ nạn xã hội
-
Văn mẫu lớp 12: Nghị luận xã hội Chiến thắng bản thân là chiến thắng hiển hách nhất
-
Văn mẫu lớp 11: Phân tích bài thơ Chiều tối (Mộ) của Hồ Chí Minh
-
Lời chia buồn dùng trong đám tang - Lời phúng viếng đám ma cảm động nhất
-
Văn mẫu lớp 6: Cảm nghĩ về bài thơ Lượm của Tố Hữu (6 mẫu)
-
Lý thuyết và bài tập FoxPro - Giáo trình tự học FoxPro
Sắp xếp theo
Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm