Hỗ trợ tư vấn
Tư vấn - Giải đáp - Hỗ trợ đặt tài liệu
Mua gói Pro để tải file trên Download.vn và trải nghiệm website không quảng cáo
Tìm hiểu thêm »Giải Toán 11 Bài tập cuối chương III là tài liệu vô cùng hữu ích giúp các em học sinh lớp 11 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 11 Chân trời sáng tạo tập 1 trang 85, 86.
Toán 11 Chân trời sáng tạo tập 1 trang 85, 86 được biên soạn đầy đủ, chi tiết trả lời các câu hỏi từ bài 1 đến 13 chương Giới hạn Hàm số liên tục giúp các bạn có thêm nhiều nguồn ôn tập đối chiếu với kết quả mình đã làm. Vậy sau đây là nội dung chi tiết giải Toán 11 tập 1 Bài tập cuối chương III Chân trời sáng tạo, mời các bạn cùng theo dõi tại đây.
\(lim\frac{n+3}{n^{2}}\) bằng
A. 1
B. 0
C. 3
D. 2
Bài làm
\(lim\frac{n+3}{n^{2}} = lim\left (\frac{1}{n}+\frac{3}{n^{2}} \right ) =lim\frac{1}{n}+lim\frac{3}{n^{2}}=0+0=0\)
Đáp án: B
Tổng của cấp số nhân lùi vô hạn:
\(M= 1+\frac{1}{4}+\frac{1}{4^{2}}+...+\frac{1}{4^{n}}+\)... bằng
A.
\(\frac{3}{4}\)
B.
\(\frac{5}{4}\)
C.
\(\frac{4}{3}\)
D.
\(\frac{6}{5}\)
Bài làm
\(M = \frac{1}{1-\frac{1}{4}}=\frac{4}{3}\)
Đáp án: C
\(\lim_{x \to 3}\frac{x^{2}-9}{x-3}\) bằng
A: 0
B. 6
C. 3
D. 1
Bài làm
\(\lim_{x \to 3}\frac{x^{2}-9}{x-3} = \lim_{x \to 3}\frac{(x+3)(x-3)}{x-3}=\lim_{x \to 3}(x+3)=3+3=6\)
Đáp án: B
Hàm số:
\(\left\{\begin{matrix}x^{2}+2x+m; x\geq 2\\3; x<2\end{matrix}\right.\) liên tục tại x = 2 khi
A. m = 3
B. m = 5
C. m = -3
D. m = -5
Bài làm
\(\lim_{x \to 2^{+}}f(x)= \lim_{x \to 2^{+}}(x^{2}+2x+m)= 2^{2}+2.2+m=m+8\)
\(\lim_{x \to 2^{-}}f(x)=\lim_{x \to 2^{-}}3= 3\)
Để hàm số f(x) liên tục tại x = 2 thì m + 8 = 3 Hay m = -5
Đáp án: D
\(\lim_{x \to +\infty}\frac{2x-1}{x}\) bằng:
A. 2
B. -1
C. 0
D. 1
Bài làm
\(\lim_{x \to +\infty}\frac{2x-1}{x} = \lim_{x \to +\infty}\left ( 2-\frac{1}{x} \right ) = 2-\lim_{x \to +\infty}\frac{1}{x}=2-0=2\)
Đáp án: A
Tìm các giới hạn sau:
a)
\(lim\frac{3n-1}{n}\)
b)
\(lim\frac{\sqrt{n^{2}+2}}{n}\)
c)
\(lim\frac{2}{3n+1}\)
d)
\(lim\frac{(n+1)(2n+2)}{n^{2}}\)
Bài làm
a)
\(lim\frac{3n-1}{n} = lim\left ( 3-\frac{1}{n} \right ) = 3-lim\frac{1}{n}=3-0=3\)
b)
\(lim\frac{\sqrt{n^{2}+2}}{n} = lim\sqrt{\frac{n^{2}+2}{n^{2}}}=lim\sqrt{1+\frac{1}{n^{2}}}=\sqrt{1+lim\frac{1}{n^{2}}}=\sqrt{1+0}=1\)
c)
\(lim\frac{2}{3n+1} = lim\frac{\frac{2}{n}}{3+\frac{1}{n}}= \frac{lim\frac{2}{n}}{3+lim\frac{1}{n}}=\frac{0}{3+0}=0\)
d)
\(lim\frac{(n+1)(2n+2)}{n^{2}} = lim\frac{2n^{2}+4n+2}{n^{2}}=lim\left ( 2+\frac{4}{n}+\frac{2}{n^{2}} \right )\)
\(= 2+lim\frac{4}{n}+lim\frac{2}{n^{2}}=2+0+0=2\)
Cho tam giác đều có cạnh bằng a, gọi là tam giác
\(H_{1}\) . Nối các trung điểm của
\(H_{1}\) để tạo thành tam giác
\(H_{2}\). Tiếp theo, nối các trung điểm của
\(H_{2}\) để tạp thành tam giác
\(H_{3}\) (Hình 1). Cứ như thế tiếp tục, nhận dược dãy tam giác
\(H_{1}\),
\(H_{2}\),
\(H_{3}\),...
Tính tổng chu vi và tổng diện tích của các tam giác của dãy.
Bài làm
Cạnh của các tam giác
\(H_{1}, H_{2}, H_{3},\)... lần lượt là:
\(a; \frac{1}{2}a, \frac{1}{2^{2}}a;\)....
Tổng chu vi của các tam giác là:
\(C = 3.a+3.\frac{1}{2}a+3.\frac{1}{2^{2}}a+....=3a.\left ( 1+\frac{1}{2}+\frac{1}{2^{2}}+... \right )=3a.\frac{1}{1-\frac{1}{2}}= 6a\)
Diện tích tam giác
\(H_{1}\) là
\(\frac{\sqrt{3}}{4}a^{2}\)
Diện tích tam giác
\(H_{2}\) bằng
\(\frac{1}{4}\) diện tích tam giác
\(H_{1}\) ; Diện tích tam giác
\(H_{3}\) bằng
\(\frac{1}{4}\) diện tích tam giác
\(H_{3}\);....
Tổng diện tích các tam giác là:
\(S = \frac{\sqrt{3}}{4}a^{2}.\left ( 1+\frac{1}{4}+\frac{1}{4^{2}}+.... \right )= \frac{\sqrt{3}}{4}a^{2}.\frac{1}{1-\frac{1}{4}}= \frac{\sqrt{3}}{3}a^{2}\)
Tìm các giới hạn sau:
a)
\(\lim_{x \to -1}(3x^{2}-x+2)\)
b)
\(\lim_{x \to 4}\frac{x^{2}-16}{x-4}\)
c)
\(\lim_{x \to 2}\frac{3-\sqrt{x+7}}{x-2}\)
Bài làm
a)
\(\lim_{x \to -1}(3x^{2}-x+2)=3.(-1)^{2}-(-1)+2=6\)
b)
\(\lim_{x \to 4}\frac{x^{2}-16}{x-4}=\lim_{x \to 4}\frac{(x-4)(x+4)}{x-4}=\lim_{x \to 4}(x+4)=4+4=8\)
c)
\(\lim_{x \to 2}\frac{3-\sqrt{x+7}}{x-2} = \lim_{x \to 2}\frac{(3-\sqrt{x+7})(3+\sqrt{x+7})}{(x-2)(3+\sqrt{x+7})}\)
\(= \lim_{x \to 2}\frac{9-x-7}{(x-2)(3+\sqrt{x+7})} = \lim_{x \to 2}\frac{-1}{3+\sqrt{x+7}} = \frac{-1}{3+\sqrt{2+7}} = \frac{-1}{6}\)
Tìm các giới hạn sau:
a)
\(\lim_{x \to +\infty}\frac{-x+2}{x+1}\)
b)
\(\lim_{x \to -\infty}\frac{x-2}{x^{2}}\)
Bài làm
a)
\(\lim_{x \to +\infty}\frac{-x+2}{x+1}=\lim_{x \to +\infty}\frac{-1+\frac{2}{x}}{1+\frac{1}{x}} = \frac{-1+0}{1+0}=-1\)
b)
\(\lim_{x \to -\infty}\frac{x-2}{x^{2}}=\lim_{x \to -\infty}\left ( \frac{1}{x}-\frac{2}{x^{2}} \right )=\lim_{x \to -\infty}\frac{1}{x}-\lim_{x \to -\infty}\frac{2}{x^{2}} = 0-0=0\)
Tìm các giới hạn sau:
a)
\(\lim_{x \to 4^{+}}\frac{1}{x-4}\)
b)
\(\lim_{x \to 2^{+}}\frac{x}{2-x}\)
Bài làm
a)
\(\lim_{x \to 4^{+}}\frac{1}{x-4} = +\infty\)
b)
\(\lim_{x \to 2^{+}}\frac{x}{2-x} = -\infty\)
Xét tính liên tục của hàm số
\(f(x)=\left\{\begin{matrix}\sqrt{x+4}; x\geq 0\\2cosx; x<0\end{matrix}\right.\)
Bài làm
Khi
\(x \geq 0 : f(x)=\sqrt{x+4}\) là hàm căn thức có tập xác định là
\((-4;+\infty)\) nên f(x) liên tục trên khoảng
\((0;+\infty)\)
Khi x < 0: f(x) = 2 cosx là hàm lượng giác nên f(x) liên tục trên khoảng
\((-\infty;0)\)
\(\lim_{x \to 0^{-}}f(x) = \lim_{x \to 0^{-}}2cosx= 2cos0=2\)
\(\lim_{x \to 0^{+}}f(x) = \lim_{x \to 0^{+}}\sqrt{x+4}=\sqrt{0+4}=2\)
Suy ra:
\(\lim_{x \to 0}f(x) = 2= f(0)\) Hay f(x) liên tục tại x = 0
Vậy hàm số f(x) liên tục trên
\(\mathbb{R}\)
Cho hàm số:
\(f(x)=\left\{\begin{matrix}\frac{x^{2}-25}{x-5}; x \neq 5\\a; x = 5\end{matrix}\right.\)
Tìm a để hàm số y = f(x) liên tục trên
\(\mathbb{R}\)
Bài làm
Khi
\(x \neq 5 : f(x)=\frac{x^{2}-25}{x-5}\) là hàm phân thức nên f(x) liên tục trên các khoảng
\((-\infty;5) \cup (5;+\infty)\)
Để f(x) liên tục trên
\(\mathbb{R}\) thì f(x) liên tục tại x = 5. Hay
\(\lim_{x \to 5}f(x) = f(5)\)
\(\lim_{x \to 5}f(x)= \lim_{x \to 5}\frac{x^{2}-25}{x-5}=\lim_{x \to 5}\frac{(x-5)(x+5)}{x-5}=\lim_{x \to 5}(x+5)=5+5=10\)
f(5) = a
Suy ra: a = 10
Trong một phòng thí nghiệm, nhiệt độ trong tủ sấy được điều khiên tăng từ
\(10^{o}C\) , mỗi phút tăng
\(2^{o}C\) trong 60 phút, sau đó giảm mỗi phút
\(3^{o}C\) trong 40 phút. Hàm số biểu thị nhiệt độ (tính theo
\(^{o}C\) trong tủ theo thời gian t (tính theo phút) có dạng
\(T(t)=\left\{\begin{matrix}10+2t; 0 \leq t\leq 60 \\ k-3t; 60 < t \leq100\end{matrix}\right.\)
(k là hằng số)
Biết rằng T(t) liên tục trên tập xác định. Tìm giá trị của k
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: