Hỗ trợ tư vấn
Tư vấn - Giải đáp - Hỗ trợ đặt tài liệu
Mua gói Pro để tải file trên Download.vn và trải nghiệm website không quảng cáo
Tìm hiểu thêm »Cấp số cộng là 1 dãy số (hữu hạn hoặc vô hạn) thỏa mãn điều kiện: Kể từ số hạng thứ 2 trở đi đều bằng số hạng đứng trước nó cộng với 1 số không đổi. Vậy công thức cấp số cộng là gì? Điều kiện thành lập cấp số cộng như thế nào? Mời các bạn cùng theo dõi bài viết dưới đây nhé.
\(\left( {{U_n}} \right) = \left\{ {\begin{array}{*{20}{c}}
{{u_1} = a} \\
{{u_{n + 1}} = {u_n} + d}
\end{array}\left( {n \in \mathbb{N}*} \right)} \right.\)d là công sai.
\({u_{n + 1}} = {u_1} + \left( {n - 1} \right)d \Rightarrow d = \frac{{{u_{n + 1}} - {u_1}}}{{n - 1}}\)
Ba số hạng
\({u_{n - 1}},{u_n},{u_{n + 1}}\) là 3 số hạng liên tiếp của cấp số cộng khi
\({u_n} = \frac{{{u_{n - 1}} + {u_{n + 1}}}}{2}\) với
\(n \geqslant 1\)
Tổng riêng thứ n xác định bởi công thức:
\(S = {u_1} + {u_2} + ... + {u_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\)
Chú ý
a. Dãy số
\(\left( {{U_n}} \right)\) là một cấp số cộng, công sai d
\(\Leftrightarrow {u_{n + 1}} - {u_n} = d\) không phụ thuộc vào n
c. Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết bài toán qua
\({u_1},d\)
Dạng 1: Nhận biết cấp số cộng
Bước 1: Tìm công sai khi biết hai số hạng liên tiếp nhau theo công thức:
\(d = {u_n} – {u_{n – 1}},\forall n \ge 2.\)
Bước 2: Kết luận:
Dạng 2: Tìm công sai từ công thức cấp số cộng
Sử dụng các tính chất của CSC ở trên, sau đó biến đổi để tính công sai d
Dạng 3: Tìm số hạng của cấp số cộng
Sử dụng công thức tính số hạng tổng quát
\({u_n} = {u_1} + \left( {n – 1} \right)d\)
Dạng 4: Tính tổng cấp số cộng của n số hạng đầu tiên
Ta vận dụng công thức tính tổng cấp số cộng:
\(\begin{array}{l} {S_n} = {u_1} + {u_2} + … + {u_n}\\ = \frac{{\left( {{u_1} + {u_n}} \right).n}}{2}\\ = \frac{{\left[ {2{u_1} + \left( {n – 1} \right)d} \right].n}}{2} \end{array}\)
Dạng 5: Tìm cấp số cộng
Bài 1. Cho cấp cấp số cộng
\((u_n)\) với
\(u_1 = 3 và u_2 = 9\). Công sai của cấp số cộng đã cho bằng
Gợi ý
Công sai của cấp số cộng đã cho bằng
\({u_2} – {u_1} = 6\)
Bài 2: Cho một CSC có
\({u_1} = – 3;\,\,{u_6} = 27\). Tìm d ?
Gợi ý
\(\begin{array}{l} {u_6} = 27\\ \Leftrightarrow {u_1} + 5d = 27\\ \Leftrightarrow – 3 + 5d = 27\\ \Leftrightarrow d = 6 \end{array}\)
Bài 3: Cho một CSC có
\({u_1} = \frac{1}{3};\,\,{u_8} = 26\) Tìm d?
Gợi ý
\(\begin{array}{l} {u_8} = 26 \Leftrightarrow {u_1} + 7d = 26\\ \Leftrightarrow \frac{1}{3} + 7d = 26\\ \Leftrightarrow d = \frac{{11}}{3} \end{array}\)
Bài 4: Cho CSC
\(({u_n})\)thỏa:
\(\left\{ \begin{array}{l} {u_5} + 3{u_3} – {u_2} = – 21\\ 3{u_7} – 2{u_4} = – 34 \end{array} \right.\)
1. Tính số hạng thứ 100 của cấp số.
2. Tính tổng cấp số cộng của 15 số hạng đầu.
3. Tính
\(S = {u_4} + {u_5} + … + {u_{30}}.\)
Gợi ý
Từ giả thiết bài toán, ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} {u_1} + 4d + 3({u_1} + 2d) – ({u_1} + d) = – 21\\ 3({u_1} + 6d) – 2({u_1} + 3d) = – 34 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {u_1} + 3d = – 7\\ {u_1} + 12d = – 34 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {u_1} = 2\\ d = – 3 \end{array} \right. \end{array}\)
1. Số hạng thứ 100 của cấp số:
\({u_{100}} = {u_1} + 99d = – 295\)
2. Tổng của 15 số hạng đầu:
\({S_{15}} = \frac{{15}}{2}\left[ {2{u_1} + 14d} \right] = – 285\)
3. Ta có:
\(\begin{array}{l} S = {u_4} + {u_5} + … + {u_{30}} = \frac{{27}}{2}\left[ {2{u_4} + 26d} \right]\\ = 27\left( {{u_1} + 16d} \right) = – 1242 \end{array}\)
Chú ý: Ta có thể tính S theo cách sau:
\(S = {S_{30}} – {S_3} = 15\left( {2{u_1} + 29d} \right) – \frac{3}{2}\left( {2{u_1} + 2d} \right) = – 1242.\)
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: