-
Tất cả
-
Học tập
-
Lớp 1
-
Lớp 2
-
Lớp 3
-
Lớp 4
-
Lớp 5
-
Thi vào 6
-
Lớp 6
-
Lớp 7
-
Lớp 8
-
Lớp 9
-
Thi vào 10
-
Lớp 10
-
Lớp 11
-
Lớp 12
-
Thi THPT QG
-
Thi ĐGNL
-
Đề thi
-
Thi IOE
-
Thi Violympic
-
Trạng nguyên Tiếng Việt
-
Văn học
-
Sách điện tử
-
Học tiếng Anh
-
Tiếng Nhật
-
Mầm non
-
Cao đẳng - Đại học
-
Giáo án
-
Bài giảng điện tử
-
Cao học
-
Tài liệu Giáo viên
-
Công thức toán
-
-
Tài liệu
-
Hướng dẫn
-
Đề thi Olympic Toán sinh viên Đại học Sư Phạm TP HCM năm 2013
ĐẠI HỌC SƯ PHẠM THÀNH PHỐ | KỲ THI OLYMPIC TOÁN SINH VIÊN 2013MÔN: TOÁN HỌC |
MÔN THI: GIẢI TÍCH
Câu 1:
Cho |q| < 1 và limn-→∞ εn = 0
Giả sử dãy (an) không âm và thoả mãn: an1 ≤ qanεn, với mọi n thuộc N
Chứng minh: limn→∞ an = 0
Câu 2: Giả sử hai dãy (an), (bn) thoả các điều kiện sau:
Tìm limn→∞ an; limn→∞ bn
Câu 3:
Cho P(x),Q(x) là các đa thức hệ số thực thoả mãn:
P[exxQ(x)x2Q2(x)] = Q[exxP(x)x2P2(x)], với mọi x thuộc R
Chứng minh P ≡ Q
Câu 4:
Cho f liên tục trên [a;b], khả vi trên (a,b) và f'(x) # 0 với mọi x thuộc (a, b)
Chứng minh rằng:
Câu 5: Cho a1, a2,...., a2013; b1, b2, ..., b2013 > 0 sao cho: ax1ax2...ax2013 ≥ bx1bx2...bx2013, với mọi x thuộc R
Xét tính đơn điệu của hàm số:
Câu 6: Cho f thuộc C2[0; a], a > 0, f(x) ≥ 0, f''(x) ≥ 0, với mọi x thuộc [0; a]
Giả sử f(0) = f(a) = 1. Gọi m = min[0; a]f(x), chứng minh:
MÔN THI: ĐẠI SỐ
Bài 1: Cho A là ma trận cấp 2 × 3 và B là ma trận cấp 3 × 2 thỏa:
Tìm AB
Bài 2: Cho n là số nguyên dương, x, a, b là các số thực với a # b. Ký hiệu M_n là ma trận vuông cấp 2n thỏa:
Tìm:
Bài 3: Cho A thuộc Mn(R). Chứng minh rằng AtA và At có cùng hạng.
Bài 4: Cho ma trận A như sau với bi # 0, với mọi i thuộc {1; 2; ... ; n}
Chứng minh rằng (A) ≥ n - 1
Bài 5:
a) Cho x1, ..., xn là n vector khác không của kgvt V và φ: V → V là một phép biến đổi tuyến tính thỏa φx1 = x2, φxk = xk - xk-1 với k = 2,3,…,n
Chứng minh rằng hệ vector x1,..., xn độc lập tuyến tính.
b) Chứng minh rằng hệ vector {|x - 1|, |x - 2|, ..., |x - n|} độc lập tuyến tính trong không gian các hàm số liên tục trên R
Bài 6:
Cho A,B là hai ma trận đối xứng cấp n. Giả sử tồn tại hai ma trận X,Y cấp n thỏa det(AXBY) # 0. Chứng minh det(A2B2) # 0
Bài 7:
Cho A, B, C, D thuộc Mn(R) thỏa ABt và CDt là hai ma trận đối xứng và ADt - BCt = I. Chứng minh rằng: AtD - CtB = I
Bài 8:
Cho P,Q,U,V là các ma trận cấp 2 thỏa U,V là 2 nghiệm phân biệt của phương trình X2 - PXQ = 0 và U-V khả nghịch.
Chứng minh Tr(UV) = Tr(P) và det(UV) = det(Q)
Bài 9: Cho P là đa thức hệ số thực có n nghiệm thực phân biệt lớn hơn 1. Xét Q(x) = (x21)P(x)P'(x)x(P2(x)P'2(x))
Q(x) có ít nhất 2n-1 nghiệm thực phân biệt đúng hay sai?
Download tài liệu để xem thêm chi tiết.

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Tài liệu tham khảo khác
Cao đẳng - Đại học tải nhiều
Có thể bạn quan tâm
-
Bài dự thi kể chuyện tấm gương đạo đức Hồ Chí Minh (7 mẫu)
10.000+ -
Văn mẫu lớp 11: Phân tích tâm trạng các nhân vật trong Hạnh phúc của một tang gia
100.000+ -
Soạn bài Bức tranh của em gái tôi - Cánh Diều 6
50.000+ -
Cảm nhận về 3 cô gái thanh niên xung phong trong Những ngôi sao xa xôi
100.000+ -
Bộ đề thi học kì 2 môn Vật lí 11 năm 2023 - 2024 (Sách mới)
50.000+ -
Chứng minh phương trình luôn có nghiệm với mọi m
50.000+ -
Tuyển tập 20 đề thi giữa học kì 2 môn Toán lớp 5 theo Thông tư 22
10.000+ -
File tập đọc lớp 1 bộ sách Cánh diều
10.000+ -
Thơ về mẹ - Những bài thơ về mẹ
10.000+ -
Bộ câu hỏi thi sát hạch chứng chỉ hành nghề xây dựng
10.000+