Hỗ trợ tư vấn
Tư vấn - Giải đáp - Hỗ trợ đặt tài liệu
Mua gói Pro để tải file trên Download.vn và trải nghiệm website không quảng cáo
Tìm hiểu thêm »
SỞ GIÁO DỤC VÀ ĐÀO TẠO
|
KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN
|
Bài 1. (2.00 điểm)
1) Rút gọn biểu thức
.
2) Với n là số nguyên dương, cho các biểu thức
và![]()
Tính tỉ số A/B.
Bài 2. (2.00 điểm)
1) Giải phương trình
.
2) Giải hệ phương trình
.
Bài 3. (2.00 điểm)
1) Cho ba số a, b, c thỏa mãn và a3 > 36 và abc = 1. Chứng minh: a2 + 3(b2 + c2) > 3(ab + bc + ca).
2) Cho a thuộc Z và a ≥ 0. Tìm số phần tử của tập hợp
(¢ là tập hợp các số nguyên).
Bài 4. (3.00 điểm)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R). Tiếp tuyến tại A của (O; R) cắt đường thẳng BC tại điểm M. Gọi H là chân đường cao hạ từ A xuống BC.
1) Chứng minh AB.AC = 2R.AH.
2) Chứng minh
.
3) Trên cạnh BC lấy điểm N tùy ý (N khác B và C). Gọi E, F lần lượt là hình chiếu vuông góc của N lên AB, AC. Tìm vị trí của N để độ dài đoạn EF nhỏ nhất.
Bài 5. (1.00 điểm)
Cho tam giác ABC có đường cao AH, biết H thuộc cạnh BC và BH = BC/3. Trên tia đối của tia HA, lấy điểm K sao cho:
. Chứng minh: AK.BC = AB.KC + AC.BK.
Download tài liệu để xem thêm chi tiết.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: