Toán 10 Bài tập cuối chương I - Cánh diều Giải SGK Toán 10 trang 19 - Tập 1

Giải Toán 10 Bài tập cuối chương I giúp các em học sinh lớp 10 tham khảo, biết cách giải các bài tập trong SGK Toán 10 Tập 1 trang 19 sách Cánh diều.

Giải SGK Toán 10 Bài tập cuối chương 1: Mệnh đề toán học tập hợp Cánh diều Tập 1 giúp các em học sinh nắm được cách trình bày, cách triển khai để giải được các bài tập từ bài 1 đến bài 8 trong sách giáo khoa. Từ đó các em học sinh tự bồi dưỡng và nâng cao kiến thức tự tin giải quyết tốt các bài tập. Đồng thời đây cũng là tư liệu hữu ích giúp thầy cô tham khảo để soạn giáo án cho riêng mình.

Giải Toán 10 trang 19 Cánh diều - Tập 1

Bài 1 trang 19

Phát biểu nào sau đây là một mệnh đề toán học?

a) Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3.

b) Nếu \widehat {AMB} = {90^o} thì M nằm trên đường tròn đường kính AB.

c) Ngày 2 tháng 9 là ngày Quốc Khánh của nuốc Cộng hòa Xã hội chủ nghĩa Việt Nam

Gợi ý đáp án

a) Phát biểu “Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3” là một mệnh đề toán học.

b) Phát biểu “Nếu \widehat {AMB} = {90^o} thì M nằm trên đường tròn đường kính AB” là một mệnh đề toán học.

c) Phát biểu “Ngày 2 tháng 9 là ngày Quốc Khánh của nuốc Cộng hòa Xã hội chủ nghĩa Việt Nam” không là một mệnh đề toán học (vì không liên quan đến sự kiện nào trong toán học).

Bài 2 trang 19

Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó.

A: “Đồ thị hàm số y = x là một đường thẳng”

B: “Đồ thị hàm số y = {x^2} đi qua điểm A (3; 6)”

Gợi ý đáp án

+) Mệnh đề phủ định của mệnh đề A là \overline A : “Đồ thị hàm số y = x không là một đường thẳng”

Mệnh đề \overline A sai vì đồ thị hàm số y = x là một đường thẳng.

+) Mệnh đề phủ định của mệnh đề B là \overline B: “Đồ thị hàm số y = {x^2} không đi qua điểm A (3; 6)”

Mệnh đề \overline Bđúng vì 6 \ne {3^2} nên A (3;6) không thuộc đồ thị hàm số y = {x^2}.

Bài 3 trang 19

Cho tứ giác ABCD. Lập mệnh đề P \Rightarrow Q và xét tính đúng sai của mệnh đề đó với:

a) P: “Tứ giác ABCD là hình chữ nhật”, Q: “Tứ giác ABCD là hình bình hành”

b) P: “Tứ giác ABCD là hình thoi”, Q: “Tứ giác ABCD là hình vuông”

Gợi ý đáp án

a) Mệnh đề P \Rightarrow Q là: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD là hình bình hành”

Đúng vì mỗi hình chữ nhật đều là hình bình hành.

b) Mệnh đề P \Rightarrow Q là: “Nếu tứ giác ABCD là hình thoi thì tứ giác ABCD là hình vuông”

Sai vì hầu hết các hình thoi không là hình vuông

Bài 4 trang 19

Dùng kí hiệu để viết mỗi tập hợp sau và biểu diễn mỗi tập hợp đó trên trục số:

a) A = \{ x \in \mathbb{R}| - 2 < x < - 1\}

b)B = \{ x \in \mathbb{R}| - 3 \le x \le 0\}

c) C = \{ x \in \mathbb{R}|x \le 1\}

d) D = \{ x \in \mathbb{R}|x > - 2\}

Gợi ý đáp án

a) Tập hợp A là khoảng (-2;1) và được biểu diễn là:

b) Tập hợp B là đoạn [-3; 0] và được biểu diễn là:

c) Tập hợp B là nửa khoảng ( - \infty ;1] và được biểu diễn là:

d) Tập hợp B là nửa khoảng ( - \infty ;1] và được biểu diễn là:

Bài 5 trang 19

Lập mệnh đề phủ định của mỗi mệnh đề sau:

A: “\forall x \in \mathbb{R},|x|\; \ge x”

C: “\exists x \in \mathbb{Z},2{x^2} + 3x - 2 = 0”

D: “\exists x \in \mathbb{Z},{x^2} < x”

Gợi ý đáp án

Phủ định của mệnh đề A là mệnh đề “\exists x \in \mathbb{R},|x|\; \le x”

Phủ định của mệnh đề B là mệnh đề “\exists x \in \mathbb{R},x + \frac{1}{x} \le 2”

Phủ định của mệnh đề C là mệnh đề “\forall x \in \mathbb{Z},2{x^2} + 3x - 2 \ne 0”

Phủ định của mệnh đề D là mệnh đề “\forall x \in \mathbb{Z},{x^2} > x”

Bài 6 trang 19

Giải Bóng đá vô địch thế giới World Cup 2018 được tổ chức ở Liên bang Nga gồm 32 đội. Sau vòng thi đấu bảng, Ban tổ chức chọn ra 16 đội chia làm 8 cặp đấu loại trực tiếp. Sau vòng đấu loại trực tiếp đó, Ban tổ chức tiếp tục chọn ra 8 đội chia làm 4 cặp đấu loại trực tiếp ở vòng tứ kết. Gọi A là tập hợp 32 đội tham gia World Cup 2018, B là tập hợp 16 đội sau vòng thi đấu bảng, C là tập hợp 8 đội thi đấu vòng tứ kết.

a) Sắp xếp các tập hợp A, B, C theo quan hệ “ \subset ”.

b) So sánh hai tập hợp A \cap CB \cap C.

c) Tập hợp A\,{\rm{\backslash }}\,B gồm những đội bóng bị loại sau vòng đấu nào?

Gợi ý đáp án

a) Ta có: A là tập hợp 32 đội tham gia World Cup 2018.

B là tập hợp 16 đội sau vòng thi đấu bảng (chọn từ 32 đội của tập hợp A sau thi thi đấu theo bảng)

Rõ ràng mỗi phần tử (mỗi đội) của tập hợp B cũng là một phần tử (một đội) của tập hợp A.

Do đó: B \subset A

Tương tự: Từ 16 đội của B, sau khi đấu loại trực tiếp, còn lại 8 đội vào tứ kết kí hiệu là tập hợp C

Do đó:C \subset B

Vậy C \subset B \subset A.

b) Tập hợp A \cap C gồm các đội bóng vừa thuộc 32 đội tham gia World Cup 2018, vừa thuộc 8 đội thi đấu vòng tứ kết, chính là 8 đội của tập hợp C.

Tập hợp B \cap C gồm các đội bóng vừa thuộc 16 đội sau vòng thi đấu bảng, vừa thuộc 8 đội thi đấu vòng tứ kết, chính là 8 đội của tập hợp C.

Vậy A \cap C = B \cap C = C

c) Tập hợp A\,{\rm{\backslash }}\,B gồm các đội thuộc 32 đội tham gia World Cup 2018 nhưng không thuộc 16 đội sau vòng thi đấu bảng.

Vậy đó là 16 đội không vượt qua vòng thi đấu bảng.

Nói cách khác: Tập hợp A\,{\rm{\backslash }}\,B gồm các đội bóng bị loại sau vòng đấu bảng.

Bài 7 trang 19

Cho hai tập hợp: A = [0;3], B = (2; + \infty ). Xác định A \cap B,A \cup B,A\,{\rm{\backslash }}\,B,B\,{\rm{\backslash }}\,A,\mathbb{R}\,{\rm{\backslash }}\,B.

Gợi ý đáp án

+) A \cap B = [0;3] \cap (2; + \infty ) = (2;3]

+) A \cup B = [0;3] \cup (2; + \infty ) = [0; + \infty )

+) A\,{\rm{\backslash }}\,B = [0;3]\,{\rm{\backslash }}\,(2; + \infty ) = [0;2]

+) B\,{\rm{\backslash }}\,A = (2; + \infty )\,{\rm{\backslash }}\,[0;3] = (3; + \infty )

+) \mathbb{R}\,{\rm{\backslash }}\,B = \mathbb{R}\,{\rm{\backslash }}\,(2; + \infty ) = ( - \infty ;2]

Bài 8 trang 19

Gọi M là tập nghiệm của phương trình {x^2} - 2x - 3 = 0.

N là tập nghiệm của phương trình (x + 1)(2x - 3) = 0

Tìm P = M \cap N.

Gợi ý đáp án

Ta có:

{x^2} - 2x - 3 = 0 \Leftrightarrow (x + 1)(x - 3) = 0

\Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 3\end{array} \right. \Rightarrow M = \{ - 1;3\}

Lại có: (x + 1)(2x - 3) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = \frac{3}{2}\end{array} \right.

\Rightarrow N = \left\{ { - 1;\frac{3}{2}} \right\}

\Rightarrow P = M \cap N = \left\{ { - 1} \right\}.

Chia sẻ bởi: 👨 Trịnh Thị Thanh
Mời bạn đánh giá!
  • Lượt xem: 02
  • Dung lượng: 204,8 KB
Liên kết tải về
Tìm thêm: Cánh diều
Sắp xếp theo